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[57] ABSTRACT

Digitally encoded images having common subject matter are
spatially related to one another and combined utilizing a
projective coordinate transformation, the parameters of
which are estimated featurelessly. For a given input image
frame, the universe of possible changes in each image point
consistent with the projective coordinate transformation is
defined and used to find the projective-transformation
parameters which, when applied to the input image, make it
look most like a target image. The projective model correctly
relates images of common (static) subject matter taken by a
single camera at a fixed location, free to rotate about its
center of projection (e.g., free to rotate about its optical axis,
and to pan and tilt) and having a lens free to zoom; and
planar scenes recorded by a camera free to move arbitrarily
(including translation or other movements of the center of
projection itself).

14 Claims, 2 Drawing Sheets
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METHOD AND APPARATUS FOR RELATING
AND COMBINING MULTIPLE IMAGES OF
THE SAME SCENE OR OBJECT(S)

FIELD OF THE INVENTION

The present invention relates to processing of digitally
encoded images, and in particular to methods and apparatus
for comparing, aligning and assembling multiple such
images that include overlapping subject matter.

BACKGROUND OF THE INVENTION

The ability to relate digitized images containing overlap-
ping subject matter facilitates a wide variety of image-
processing and ephancement operations. Multiple images
can be “stitched together” into a composite image, effec-
tively expanding the camera’s visual frame. At the level of
a single image, overlapping subject matter can be drawn
from related images to enhance the image resolution of the
overlapped portion or to stabilize video images.

A concomitant to combining overlapping image portions
is the ability to discriminate between images that do, in fact,
contain common visual subject matter and those that do not.
For example, as an aid to motion-picture editors, video
streams can be labeled with time stamps indicating “shot
changes” between unrelated scenes. Database libraries of
images can be canvassed for entries refated (or equivalent)
to areference image by searching for common features (e.g.,
the same scene photographed from a different angle).

The analysis required to compare and combine related
images is typically very complex, since merely in moving
the camera to obtain different views the photographer inevi-
tably encodes nnique visual relationships in each image.
Any one frame, for example, ordinarily reflects the effect of
perspective recession, whereby lines converge toward a
vanishing point and receding objects draw closer together (a
phenomenon known as “chirping”). The effect of perspec-
tive changes with viewpoint, so overlapping image portions
cannot simply be overlaid. Further complicating image
combination is the “keystoning” effect produced by inclin-
ing the optical axis of the camera upward or downward
relative to the recorded scene, which results in. converging
lines.

The difficulty increases when the images are taken by
different cameras, or by a single camera that may undergo
physical movement and/or changes in focal length. To
combine such images, their contents must first be related to
one another in a geometrically consistent fashion, free of the
distracting pictorial idiosyncracies that stem from the char-
acteristics and movement of the camera(s); in other words,
the images must be put into the same coordinate frame. The
operations necessary to place two images in the same
coordinate frame, so that common feature points from one
image can be related to those of another, represent a coor-
dinate transformation. This transformation counteracts the
effects of camera and motion; indeed, if the transform
operations are known explicitly, they can be used to recon-
struct or recover camera parameters and motion.

To combine images (or to reconstruct the camera motions
that produced successive images), it is important to have
both a precise description of the coordinate transformation
between any given pair of images or video frames, and some
indication as to how accurately this coordinate transforma-
tion accounts for the differences in the two images. To this
end, a variety of approximate but mathematically tractable
transformations have been employed, The most common
assumption (especially in motion estimation for coding, and
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optical flow for computer vision) is that successive frames
are related to one another by simple translation. See, e.g.,
Tekalp et al., Proc. of the Int. Conf. on Acoust., Speech and
Sig. Proc., pp. 111-169 (1992). Although translation
imposes few constraints and is simple to implement, it is
poor at handling large changes due to camera zoom, rotation,
pan and tilt.

Affine transformations exactly describe rotation about the
optical axis of the camera, camera zoom and pure shear (a
theoretical artifact that real-world cameras cannot cause).
However, the affine model cannot capture camera pan and
tilt, and therefore cannot accurately express chirping or
keystoning. Consequently, the affine model uses the wrong
parameters to describe these visual effects, resulting in
imperfectly aligned images.

Other approximate transformational models include the
12-parameter biquadratic model and the 8-parameter bilin-
ear model. The latter is widely used in the fields of image
processing, medical imaging, remote sensing and computer
graphics, but fails to capture chriping.

The eight-parameter projective model precisely accounts
for camera translation, pan, tilt, rotation about the optical
axis and zoom, as well as for chirping and keystoning; the
eight parameters encode movement along all three spatial
axes, zoom (i.e., scale in each of the image coordinates x and
y), and rotation (including rotations due to panning, tilting,
and movement about the optical axis). The projective param-
eters can exactly relate to a reference image any other image
resulting from application of one or more of the allowed
parameters to the reference image; the set of all possible
images that can be produced by variation of these param-
eters is herein referred to as a “video orbit.” That is, the
video orbit of a given image connotes the set of all images
that can be produced by applying operators from the pro-
jective group to the given image.

Unfortunately, the projective parameters are notoriously
difficult to estimate. One approach relies on manual identi-
fication of corresponding features in two images sought to
be related; the point correspondences are then used to
estimate projective parameters. See, e.g., Tsai et al., fassp,
vol. ASSP-29, pp. 1147-52 (December 1981); Faugeras et
al., Int’l. of Patt. Recog. and Artif. Intell., vol. 2, no. 3, pp.
485-508 (1988); Shashua et al., “Relative Affine: Theory
and Application to 3D Reconstruction From Perspective
Views,” Proc. IEEE Conf. on Comp. Vision and Patt. Recog.
(1994); Sawhney, “Simplifying motion and structure analy-
sis using planar parallax and image warping,” CVPR (1994);
Kumar et al., “Shape recovery from multiple views: a
parallax based approach,” ARPA Image Understanding
Workshop (November 1984). The feature-based approach is
not only cumbersome in requiring hand-selection of reliable
features, but is also prone to inacecuracy due to signal noise
and occlusion (as well as poor feature choices).

Featureless approaches, however, have not heretofore
been available for projective coordinate transformations. For
example,generalized cross-correlation is “featureless” in the
sense that operations are performed on the entire image
instead of explicitly defined features therein, but has been
applied only to simple translation. Moreover, its approach
involves an exhaustive search for the mathematical operator
that “best” relates the two frames in accordance with the
desired form of transformation. See, e.g., H. L. Van Trees,
Detection, Estimation, and Modulation Theory (Part I)
(1968); R. Young, Wavelet Theory and its Applications
(1993). The technique is computationally prohibitive for all
but coarse sampling frequencies, resulting in the need for



5,706,416

3

iterative gradient-based search procedures that are cumber-
some and prone to becoming trapped in local optima,
producing incorrect results.

DESCRIPTION OF THE INVENTION

Brief Summary of the Invention

The present invention provides a featureless approach to
relating images to one another using a projective coordinate
transformation. The invention utilizes spatiotemporal
derivatives of a pixel parameter (such as brightness, lumi-
nance or color) to obtain an “optical flow” or “optical fit”
model of transformation. For a given input image frame, the
model defines the universe of possible changes in each
image point consistent with the projective coordinate
transformation, and is used to find the projective-
transformation parameters which, when applied to the input
image, make it look most like a target image. The projective
model used in the invention correctly relates images of
common (static) subject matter taken by a single camera at
a fixed location, free to rotate about its center of projection
(e.g., free to rotate about its optical axis, and to pan and tilt)
and having a lens free to zoom; and planar scenes recorded
by a camera free to move arbitrarily (including translation or
other movements of the center of projection itself).

Optical fit assumes that each point in a first image or
image region can be related to a corresponding point in a
second image according to a transformation model. With
this approach, the pixels of both images are compared to
identify point correspondences, and the degree and direction
of displacement between corresponding points (the “flow
velocity”) is determined. Parameters of the chosen transfor-
mation model that “explain” each displacement are then
computed. Although these parameters would ideally be
consistent across the “flow field” of point correspondences
and velocities, in practice they vary due to shifts not
explainable by the transformation model or to errors in
calculation; accordingly, linear regression is used to find the
transformation parameters which, while not perfectly
accounting for each displacement, best transform the first
image into the second image. Optical fit is widely used in
image analysis—specialized hardware is even available to
generate the flow field—but is ordinarily emplioyed based on
a simple translation model. The present invention extends
this technique to facilitate featureless recovery of projective
coordinate transformation parameters.

The *“optical flow” procedure does not require point-to-
point correspondences. Instead, the change in a pixel param-
eter (e.g., brightness) from one image to another is assessed
at each pixel position, and the global set of changes used to
compute a best-fit transformation that accounts for these
changes. The present invention extends this technique also
to estimation of projective coordinate transformation param-
eters. The optical flow model is validly used to relate one
image to another when the change between them is rela-
tively small. Accordingly, the invention is preferably applied
to closely related images in a sequence. Because of the
group structure of such a sequence, the coordinate transfor-
mations between, for example, successive frames can be
accumulated using the law of composition afforded by the
group, and used to relate any one frame in the sequence to
any other frame.

The analytic techniques of the present invention are
applicable over a wide range of resolutions. However, it is
preferred to analyze images iteratively, at multiple resolu-
tion levels. Beginning with coarsely sampled images, the
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invention is first used to determine whether the two images
even lie in the same orbit. If so, further iterations at
progressively finer resolutions approximate the projective
(or “homographic™) coordinate transformation relating the
two images with increasing accuracy. Iterative processing is
preferably also used at each level of resolution in the
estimation procedure itself.

Accordingly, in a first aspect, the invention comprises
methods and apparatus for determining whether two images
are even related to one another according to a projective
coordinate transformation. This application of the invention
is useful, for example, in automatically detecting shot
changes in a sequence of video frames.

In a second aspect, the invention is used to identify the
common portions of two images, spatially align the images
in a consistent coordinate reference frame, and combine the
common image portions to enhance overall resolution. In a
related third aspect, the invention is used to identify distinct,
possibly non-overlapping image portions and “paste” these
together, along with the common image portions, to produce
a composite scene of greater spatial extent than any of the
component images.

In a fourth aspect, the projective transformation estimated
by the invention is analyzed to estimate the underlying
camera parameters (i.e., tilt, pitch, roll and zoom setting.

In a fifth aspect, the invention is used to characterize the
orbit of a plurality of related images. Once characterized,
this orbit can be used to construct new images consistent
with the orbit of the analyzed images yet never actually
recorded by a camera.

In a sixth aspect, the invention provides a visual thesaurus
of digitized images that can be searched for variations of a
reference image. In particular, the invention searches for
images projectively related to the reference image, and
therefore containing common subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing discussion will be understood more readily
from the following detailed description of the invention,
when taken in conjunction with the accompanying drawings,
in which:

FIG. 1 is a flow chart illustrating iterative analysis of a
pair of images at varying image resolutions, where the
reference image is repeatedly processed to reduce error; and

FIG. 2 schematically illustrates a representative hardware
environment for the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

1. Image Analysis

For simplicity of presentation, transformations in one
dimension are described first; typically, of course, the inven-
tion is applied to two-dimensional images. In general, the
optical flow parameter u,relates each point in a first image
to a corresponding point in a second image in accordance
with a transformation model. (As noted previously, the
traditional optical flow formulation assumes that each point
x in frame t is a translated version of the corresponding point
in frame t+At, and that Ax and At are chosen in the ratio
Ax/At=u—the translational flow velocity of the point in
question.) The quantity u, can be related to the spatial and
temporal derivatives of a pixel parameter such as brightness,
luminance or color by the equation

uExrE~0 (Equation 1)
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where E, and E, are the spatial and temporal derivatives,
respectively, of the pixel parameter E.

To find the proper flow parameters relating two images to
one another, one can use the “optical fit” procedure to

6

setting the derivatives equal to zero, and verifying with the
second derivatives, gives the linear system of equations for
“projective flow™:

quantify the optical flow between each point in an input s IAE2 ESOE? IRER . SREE, (Bquation 6)
image and a corresponding point in a target image according . ) .

to Equation 1, and find the optical-flow parameters that best IPEF LPEZ LA a | == | L&E

fit the model to the observed optical flow; or, alternatively, IRE2 IaER IE? 90 ZEE;

use the “optical flow” procedure that utilizes the flow R
equation directly. In the projective case, optical fit and 10 Analogously, the first three terms of the Taylor series of

optical flow differ only in the weighting assumed, although
“projective fit” provides the added advantage of enabling the
motion within an arbitrary subregion of the image to be
easily found. For global image motion, however, “projective
flow” provides best results.

Suppose that (one-dimensional) coordinates in the input
or reference image g are denoted by x, and that coordinates
in the target image h are denoted by x'. The actual flow

15

1,, can be applied to Equation 3 to obtain

e,,:E(br(a—bc—l)xﬂbo—a)cx%E/E,)i (Equation 7)

and once again differentiating and setting to zero gives the
linear system of equations for “projective fit”:

(Equation 8)

PR . . . EPE, ISPE, IRE,
velocity is given by Equation 1, but the velocity predicied by a2 ZPE/Es
the projective model is 20 ZPE, IRE, IaE, q1 | =— | IxEJ/E,
=RE, %aE, XK, 9 LE/E,
. Gx+b (Equation 2)
Up =X —X= Xt 1 —Xx

A discrepancy between the flow velocity u-and the model
velocity u,, is expected, due either to errors in the flow
calculation or to errors in the ability of the model to relate
the two images exactly. Regression can be applied to obtain
the best least-squares fit by minimizing

&= L (s~ g = Ztt + EAELF (Equation 3)
X

Alternatively, the projective coordinate transformation

can be directly incorporated into the optical flow equation

25

30

Equation 1 can be extended into two dimensions as
follows:

uE AvVEFEAD (Equation 9)
where u.and vyare the flow velocity components in the x and
y directions, respectively, and E, and E, are the x- and
y-direction spatial derivatives of the pixel parameter E.

The eight parameters of a two-dimensional projective
coordinate transformation are given by

and the squared error as , [x' ] _AlsyITHb Axsb (Equation 10)
» s = y - MxyT+1 T T+ 1
(Equation 4)
o= (unEs+ EP =X ( ax +11’ - x+_§’ ) and the desired eight scalar parameters are denoted by p=[A,
x x\ ext * b; ¢, 1], where A is a 2x2 matrix of real numbers, and b and

summed over the whole image; differentiating and equating
the result to zero provides solutions for the projective
parameters a, b and c. Using the first three terms of the
Taylor series of u,,

¢ are 2x1 matrices of real numbers.
Equation 10 can be expanded into Taylor series as fol-
lows:

b H{a—be ot bo—a)er Ha-be) A 45 e T
Equation 4 can be rewritten as VY =y Pyl y¥ (Beuation 1)
Incorporating these into Equation 4 yields a set of eight
€pow=Z(BHa-be-1)et{be—a)e?)E AE Y (Bquation 5) linear equations in eight. unknowns for “bilinear flow”:
P22 ToyE2  SofER,  Saob LRPEE, SEE, IoEE, IEmE. T . (Equation 12)
IAE?,  IRES  InER, N, LHEE, IPEE, IgEE, IEpE,. gis
InPE?,  InE2,  IYEE,  LE,  IoPEE, IophE., IYEE, IEyE vy
ToE2, ~ TAER, Lk IE2,  IoEE, DEE, DEE, IBE ar
IRVEE, INEE, InEL, IE0E, IDAVER LYEL  InEL  Iok? am |
EAEE, IREE, IuoEkE, IExE, DHER,  IPER  IoE?, b o
TofEE, IoEEy, IPEE, IEsE, SofEh  SokR,  IPEL  DE? Lq”
\zors, zem, oEB. BB, o  n&h  mER I | .
- BEnE, SEXE SEYE SEFE FEE, TEXE, SEYE LEE,I*
65

Defining q,=(bc-a)c, q,=a—bc—1, and g,=b, and differenti-
ating with respect to each of the three parameters of q,

The summations are over the entire image (all X and y) if
computing global motion, or over a contiguous area (a
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“windowed patch” or “bounding box™) of the image if
computing local motion.

This procedure produces a set of “model” parameters
based on the approximation of Equation 5. The quality of the
estimated parameters is then assessed by utilizing these in
the exact projective transformation (Equation 10), applying
the transformation to the reference image, and assessing the
resulting image against the target image (i.e., approximate
feedforward and exact feedback). In one dimension, it is
possible simply to solve three linear equations in three
unknowns to estimate the parameters of the approximate
motion model, and then relate the terms in this Taylor series
to the exact parameters a, b, ¢ by solving another set of three
equations in three unknowns. In two dimensions, although
the estimation step can be carried out as set forth above,
relating the estimation to the exact parameters is more
difficult; the parameters derived using the Taylor series do
not correspond directly to the parameters of Equation 10; in
fact, the equations relating the terms in the Taylor series of
the approximate model to the desired exact model param-
eters comprise eight nonlinear equations in eight unknowns.
Instead of solving these equations directly, the approximate
model is preferably related to the exact model using the
following procedure:

1. In the source image, select four ordered pairs of points
(i.e., pixels specified by coordinate location), such as
the four corners of the bounding box containing the
region under analysis, or the four corners of the image
if the entire image is under analysis. Suppose, for
simplicity, that these points are the corners of the unit
square s=[s,, s, 85, 541=[(0,0)7,(0,)",(1,0)",(1,)7].

2. Apply the approximate coordinate transformation
obtained with Equation 12 or Equation 13 to each of the
four points in the square s to obtain a set of four
corresponding points r in the target image.

3. Assume that s maps exactly to r according to Equation
10. This results in four readily solved linear equations:

(Equation 13)

[ 511,000, ~0ex'k =~y

0,0,0:35,36 L5 kY0 k ] Lavmsy brcysby cncrll
where 1=k=4. This results in approximation of the exact
eight parameters p based on the approximate model, with a
goodness-of-fit estimate provided by summation of the
mean-squared error in the pixel parameter E over corre-
sponding regions in the target image and the projectively
transformed reference image.
For projective fit, each pair of corresponding points

x Xk
w || o
are assumed to be related by a projective coordinate trans-
formation. Equation 13 is therefore applied over the entire
optical flow field to obtain the projective parameters relating
each pair of corresponding points. Because the actual dis-
placement between points represents a flow velocity, the
linear regression formula of Equation 3 can be used to find
the projective parameters (u,,) that capture, with least over-
all error, the system of flow velocities represented by the
optical flow field.
It should be stressed that the approximations afforded by
projective flow and projective fit suffice in accuracy for
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8

small deviations from the identity A=I, b=0, c=0, where I is
the identity matrix

[ 1]

It is not, however, adequate to describe large changes in
perspective, Accordingly, the approximate model is prefer-
ably applied to a sequence of images, such as a sequence of
video frames representing a single scene shot, that are
largely similar to one another. By using the approximate
model to track small frame-to-frame changes, and each time
relating these small changes to the exact model using the
above procedure, the small changes can be accumulated
according to the law of composition afforded by the group
structure, In particular, the law of composition means that if
a transformation t relates a first image to a second image, and
a transformation t' relates the second image to a third image,
then the first and third images are related by a composite
function t"=t o t'.

This procedure affords the ability to accurately relate
images representing large changes in perspective (e.g.,
frames from different ends of a scene shot); instead of
attempting to relate such disparate images directly, which
would result in a relatively poor fit due to the limitations of
approximation, they are instead related through a succession
of more closely related intervening frames—that is, through
cumulative application of the transformation functions that
relate the intervening frames.

2. Tterative Processing

Although the foregoing analysis can be applied to a pair
of frames of arbitrary resolution(s), it is preferably applied
iteratively at multiple resolution levels. By beginning with
the lowest resolution, this approach allows for quick deter-
mination whether two images even lie in the same orbit—
that is, whether they represent variations resulting from
application of one or more degrees of camera freedom
captured by the projective model. If they do not, processing
ceases, and this information can prove valuable in itself: for
example, the first unrelated image detected in a sequence of
video frames may represent a scene change, which can be
tagged for subsequent editing purposes.

Refer to FIG. 1, which illustrates this procedure in flow-
chart form. The process operates on areference image g and
a target image h, as shown at 100. In a first step 105, a
Gaussian pyramid of multiple (generally three or four)
resolution levels is constructed for the images g and h. This
is accomplished, for example, by sampling the reference and
target images at different rates. In the second step 110, the
transformation parameters are initialized to identity and an
index specifying the current image resolution is set to the
bottom of the resolution pyramid, so that processing begins
on the lowest-resolution pair of images g, h.

Using the estimation and relating techniques discussed
above, the projective transformation parameters p relating g
to h are obtained in step 115. At each level of resolution the
parameters p are estimated iteratively, and the law of com-
position used to facilitate incremental convergence to a
solution. Indeed, iterative estimation of the parameters p
represents a useful strategy whether or not images are
compared at varying resolution levels.

Thus, instead of using the projectively transformed ref-
erence image (that is, the image produced by projectively
transforming the reference image based on the estimated
parameters) merely to assess goodness of fit, the projectively
transformed reference image is itself used as a reference
image to re-estimate the projective parameters; and once



5,706,416

9

again, the image produced by projectively transforming this
new reference image is assessed against the target image to
quantify the error. This procedure is repeated until the error
between reference and target images falls below some
predetermined threshold determined by computational
resources and allowable processing time or until an arbitrary
maximum number of iterations (two or three are generally
sufficient for images in or near the same orbit) has been
performed. Using the law of composition, the transformation
parameters obtained at each iteration are cumulated into a
composite function relating the original reference image to
the target image.

This procedure is set forth at steps 115-125. In step 115,
g, is defined as the original reference image g, and the terms
of the approximate projective model relating image frames
g, and h are derived as previously described. The parameters
derived through approximation are used to establish a pro-
jective coordinate transformation function t,, preferably
using the four-point approach as described above. The
transformation to is applied to the reference frame g, to
produce a processed reference image g, ..

In steps 120-130, this processed reference image is com-
pared with the target image h, and a new set of projective
parameters relating the processed reference image g, to the
target image h is derived. These parameters are used to
establish a new projective coordinate transformation func-
tion t;. The composite function t, o t; is applied to the
reference image g, at step 125, and the resulting image g,
compared to h at step 135. If the image g, is insufficiently
close to h (as determined visually or computationally, e.g.,
by the magnitude of the mean squared error), steps 115-130
are repeated; a transformation t, is established from the
image g, to the reference image h and the composite
function t, 0 t, o t, is applied to g, (step 140). The process
continues until the visual comparison is acceptable, or a
maximum acceptable error is no longer exceeded, or for an
arbitrary number of iterations. The final composite function
has the form

tt,oto...0t,

It should be noted that a rectangular image assumes the
shape of an arbitrary quadrilateral when it undergoes a
projective coordinate transformation. One useful implemen-
tational strategy, therefore, is to surround the transformed
image with a rectangular bounding box and pad undefined
portions (i.e., “empty” portions outside the quadrilateral)
with the quantity NaN, a standard IEEE arithmetic value, so
that any calculations involving these values automatically
inherit NaN without slowing down the computation

The iterative process embodied in steps 115-140 is
repeated for each resolution level. As shown at steps 145 and
150, the resolution index is incremented and steps 115-140
repeated on the next-higher resolutions of g and h until the
highest-resolution images in the pyramid are reached, and
the parameters relating these images are the final parameters.

The foregoing procedures can be enhanced various ways.
The Taylor-series formulations employed in our optical-flow
approximation implicitly assume smoothness. Typical
images, however, have many sharp edges and contours that
violate this assumption. Accordingly, performance of the
multiple-resolution frame comparison is improved if the
images are blurred with a suitable bandlimiting function
before estimation. Of course, since what is ultimately
desired is a sharp image the original (unblurred) images are
used when applying the final coordinate transformation.

Parameter estimation performance can be improved by
first estimating the parameters that commute, since estimat-
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ing the parameters of a commutative group of coordinate
transformations is computationally efficient through the use,
for example, of Fourier cross-spectra; see Girod et al.,
“Direct Estimation of Displacement Histograms,” OSA
Meeting on Image Understanding and Machine Vision, June
1989. Thus, better performance is obtained if one first
estimates the two parameters of translation, then uses these
parameters to correct the reference image for the translation,
and then proceeds to estimate the eight projective param-
eters.

Similarly, if the reference image is merely a rotated
version of the target image, one can apply a log-polar
coordinate transformation to both target and reference
images so that they become related by a translation in the
plane. Thus, it is possible to simultaneously estimate
isotropic-zoom and rotation about the optical axis by apply-
ing a log-polar coordinate transformation followed by a
translation estimator; alternatively, the same result can be
achieved by application of the Fourier-Mellin transform (see
Sheng et al., “Frequency-Domain Fourier-Mellin Descrip-
tors for Invariant Pattern Recognition,” Optical
Engineering, May 1988). If the only difference between
reference and target images is a camera pan, then the pan can
be estimate through a coordinate transformation to cylindri-
cal coordinates, followed by a translation estimator.

In practice, we have found that it is computationaily
beneficial to execute the following “commutative initializa-
tion” before estimate projective parameters:

1. Assume that the target image is merely a translated

version of the reference image.

a. Estimate this translation using Fourier cross-spectra;

b. Shift the reference image by the amount indicated by
the estimated translation;

c¢. Compare the mean squared error between the shifted
reference and target images to the mean squared
error between the unshifted reference and target
images; and

d. If an improvement has resulted, use the shifted
reference image for subsequent computations.

2. Assume that the target image is merely a rotated and

isotropically zoomed version of the reference image.

a. Bstimate the two parameters of this coordinate trans-
formation;

b. Apply these parameters to the reference image;

c. If an improvement in mean square error results, use
the coordinate-transformed (rotated and scaled) ref-
erence image for subsequent computations.

3. Assume that the reference image is merely an -

“x-chirped” (panned) version of the target image.

a. Estimate the amount of x-chirp through a coordinate
transformation to cylindrical coordinates followed
by translation estimation;

b. Apply the inverse of this coordinate transformation
to the reference image to “x-dechirp” the image; and

c. If an improvement in mean square error results, use
the *“x-dechirped” reference image for subsequent
computations.

4, Assume that the reference image is merely a

“y-chirped” (tilted) version of the target image.

a. Estimate the amount of y-chirp through a coordinate
transformation to cylindrical coordinates followed
by translation estimation;

b. Apply the inverse of this coordinate transformation
to the reference image to “y-dechirp” the image; and

c. If an improvement in mean square error results, use
the “y-dechirped” referemce image for subsequent
computations.
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Although it might seem desirable to execute the foregoing
commutative estimates iteratively for successive projective
transformations, our experience indicates that a single pass
usually suffices. This pre-processing procedure identifies the
frequent situations where two images are related by a pure
zoom, a pure pan or tilt, etc., thereby saving considerable
computational effort while providing an exact transforma-
tion.

3. Applications

a. Image Alignment

Assume that recovery of projective-transformation
parameters between two images is successfully accom-
plished (that is, the mean squared error is within acceptable
limits). Unless the two images are merely translated versions
of one another, they cannot be combined additively. Instead,
the one of the images is transformed according to the
projective parameters so that it is spatially consistent with
the other image. Only then may the common portions be
directly overlapped without distortion. This process of cor-
recting for spatial inconsistency (due to variation in any of
the parameters captured by projective transformation) and
registering the common portions is herein referred to as
“alignment.”

As described below, aligned images may be stitched
together in a panorama of increased dimension, and over-
lapping portions combined by averaging or otherwise pro-
cessed to increase resolution.

b. Resolution Enhancement

If resolution were perfect—that is, if every image con-
tained an infinite amount of information so that the depicted
scene were accurate in the minutest detail—the common
portions of overlapping images would be absolutely redun-
dant. In the real world, however, given the imperfections of
lenses, the distortive effects of camera movement and the
limited number of pixels in the recording sensor array,
overlapping images portions are likely to contain non-
redundant information which, when combined, produces a
finer level of fidelity than either image alone. This is
particularly true, for example, in the case of a normal or
wide-angle shot and a zoom close-up of a portion of that
shot. Merely by combining overlapping images, it is pos-
sible to obtain enhanced detail of the overlapping portions.
The more images that are combined, the greater will be the
overall degree of enhancement.

Once again, because of the group structure of the projec-
tive coordinate transformations, any image in a sequence can
be related to any other image of the sequence either by
arbitrarily selecting one frame and finding the coordinate
transformation between this frame and every other frame, or
by finding the coordinate transformations between succes-
sive frames.

More specifically, “cumulative parameter estimation”
involves obtaining coordinate transformations between a
reference image and every other image of the sequence:
toy1s toszs + - + 5 Loy, ~Differential parameter estimation,”
on the other hand, involves obtaining coordinate transfor-
mations between successive pairs of images in the sequence:
toss tiszs tas3s » « - » Ly g5, Theoretically, both methods
are equivalent in that a reference frame F,, can be related to
a target frame F, by the function

Fo=to_F;
using the cumulative approach, or

Fo=to410 11520 - - - 0 11 s
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using the differential approach.

Nonetheless, the two methods differ for two reasons. First,
in practice, the estimated coordinate transformations
between pairs of images register them only approximatiey
due to variations outside the eight allowed parameters,
movement of the center of projection, objects moving in the
scene, etc.; accordingly, when a large number of estimated
parameters are composed, cumulative error sets in. Second,
although images theoretically extend infinitely in all
directions, in practice they are cropped to a rectangular
bounding box; thus, a given pair of images may not overlap
at all, in which case it is not possible to estimate the
parameters of a coordinate transformation using those two
frames.

Accordingly, when camera movement is monotonic, any
errors that accumulate along the registered sequence are not
particularly noticeable, and cumulative parameter estima-
tion is favored. On the other hand, if the camera movement
is small, so that any pair of frames chosen from the video
orbit have a substantial amount of overlap when expressed
in a common coordinate system, differential parameter esti-
mation is favored.

Preferably, normal (or wide-angle) and zoom images are
combined by “upsampling” the normal image onto a denser
lattice of pixels, widening the space between pixels (and
resulting in a sparser image) but making new interstitial
pixels available. When the two images are scaled to make
feature sizes consistent, the zoom image will necessarily
reflect a greater pixel density than the normal image;
accordingly, the pixel density of the new lattice is chosen to
correspond to the density of the unmodified zoom image,
allowing it to be imposed directly onto the lattice. See, e.g.,
Trani et al., CVGIE vol. 53, pp. 213-39 (May 1991). The
exact manner in which pixels are imposed can take several
forms.

In the simplest “most recent arrival” approach, pixels
from the zoom image overwrite pixels in the upsampled
lattice, regardless of whether the overwritten pixels are
blank or contain information from the normal image.
Preferably, however, the zoom-image pixels are statistically
combined with those of the normal image. This approach is
particnlarly useful where more than two images are being
combined, in which case statistical combination is applied to
pixels from all images that correspond to each image point.
Suitable modes of statistical combination include obtaining
the median, mean, mode or trimmed mean of the luminance
and/or color values of the pixels to be combined.

c. Scene Widening

While combining the common portions of overlapping
images can enhance the resolution of those portions, com-
bining the non-overlapping portions facilitates construction
of an image of greater spatial extent than any of the
component images.

As noted earlier, projective transformation causes a rect-
angular image to assume the shape of an arbitrary quadri-
lateral. This creates a “keystoning” effect, choking the image
where previously parallel lines converge and spreading the
image where such lines diverge. It is therefore important,
when combining images, to correct for the effect of key-
stoning on pixel resolution; choked areas are averaged or
otherwise processed to accommodate the smaller sumber of
pixels available to express the image information, while
information is added to spread areas to fill otherwise blank
pixels. This is preferably accomplished by combining over-
lapping image portions through statistical combination (with
or without upsampling as described above), utilizing a
sufficiently large pixel lattice to accommodate piecewise
combination of all of the non-overlapping regions.
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d. Recovery of Camera Parameters

Because the projective transformation encodes camera
translation, pan, tilt, rotation about the optical axis and
zoom, relating two frames by such a transformation implic-
itly involves modeling these elements of camera movement.
The A parameter encodes stretching of lines and their
rotation about the optical axis of the camera; the b parameter
encodes simple translation along the x and y axes; and the
¢ parameter encodes the perspective recession of the
recorded scene (that is, its “chirp rate”). Accordingly, the A
parameter encodes zooming, shearing and rotation about the
optical axis, and the two ¢ parameters reflect the degree of
tilt and pan between two scenes.

e. Image Construction

By characterizing the orbit of a plurality of related frames,
one can apply a projective coordinate transformation to the
image in any particular frame to produce another, arbitrary
scene that is consistent with all other frames even though
never actually recorded by the camera. In other words, the
camera parameters encoded by the projective transformation
can be hypothetically applied to any individual scene with-
out loss of information or interpolation. This capability
facilitates, for example, construction of a smooth transition
between otherwise disconnected frames.

Projectively transforming an image according to Equation
10 ensures that the transformed and reference images lie in
the same orbit. Thus, for example, to obtain a “bridging”
frame between first and second related frames, one can
obtain the projective parameters relating the first to the
second frame, and then projectively transform the first frame
using smaller parameters. Alternatively, a source video
frame can be processed using some other technique, and the
result compared with the source frame to determine whether
it lies in the same orbit—that is, whether the error associated
with the projective transformation relating the source to the
processed frame falls below some predetermined acceptabil-
ity limit.

f. Visual Thesauri

The capacity to discriminate, by means of the error
associated with the projective transformation, between pro-
jectively related and unrelated images can be used to guide
a search through an image database. Images representing
different views of the search image will have a low associ-
ated error value, while unrelated images will be clearly
revealed by high error values. The search can be accelerated
using the coarse-to-fine implementation described above;
obviously, irrelevant images can be culled at the rapidly
executed coarse level, speeding overall processing.

An exemplary implementation of this aspect of the inven-
tion is a database library of digitized architectural images.
The search image can be a photographic image or even a
sketch of salient building features; of course, the better and
more detailed the search image, the fewer will be the number
of false positives identified by the search.

4. Hardware Implementation

Refer now to FIG. 2, which illustrates, in block-diagram
form, a hardware system incorporating the invention. As
indicated therein, the system includes a video source 202
(e.g., a video camera or playback device), which supplies
input images to be analyzed. The output of video source 202
is digitized as a frame into a pixelmap by a digitizer 204. The
digitized video frames are sent as bitstreams on a system bus
206, over which all system components communicate, and
may be stored in a mass storage device (such as a hard disk
or optical storage unit) 208 as well as in a main system
memory 210 (specifically, within a partition defining a
Series of input image buffers capable of storing a sequence
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of video frames, and representatively denoted by reference
numerals 212,, 212,, 212, ...).

The operation of the illustrated system is directed by a
central-processing unit (“CPU”) 220. To facilitate rapid
execution of the image-processing operations hereinafter
described, the system preferably contains a graphics or
image-processing board 222; this is a standard component
well-known to those skilled in the art.

The user interacts with the system using a keyboard 230
and a position-sensing device (e.g., a mouse) 232. The
output of either device can be used to designate information
or select particular areas of a screen display 234 to direct
functions to be performed by the system.

The main memory 210 contains a group of modules that
control the operation of CPU 220 and its interaction with the
other hardware components. An operating system 240
directs the execution of low-level, basic system functions
such as memory allocation, file management and operation
of mass storage devices 208. At a higher level, an analysis
module 245, implemented as a series of stored instructions,
directs execution of the primary functions performed by the
invention, as discussed below; and instructions defining a
user interface 250 allow straightforward interaction over
screen display 234. User interface 250 generates words or
graphical images on display 234 to prompt action by the
user, and accepts user commands from keyboard 230 and/or
position-sensing device 232. Finally, to facilitate use of the
invention as a visual thesaurus, memory 210 includes a
partition 255 for storing a searchable image database or
sequentially accessed portions thereof.

The contents of each image buffer 212 define a “raster,”
ie., a regular two-dimensional pattern of discrete pixel
positions that collectively represent an image and may be
used to drive (e.g., by means of image-processing board 222
or an image server) screen display 234 to display that image.
The contents of each memory location in a frame buffer
directly govern the appearance of a comesponding pixel on
display 234.

It must be understood that although the modules of main
memory 210 have been described separately, this is for
clarity of presentation only; so long as the system performs
all necessary functions, it is immaterial how they are dis-
tributed within the system and the programming architecture
thereof. Likewise, although conceptually organized as grids,
pixelmaps need not actually be stored digitally in this
fashion. Rather, for convenience of memory utilization and
transmission, the raster pattern is usually encoded as an
ordered array of pixels.

As noted above, execution of the key tasks associated
with the present invention is directed by analysis module
245, which governs the operation of CPU 220 and controls
its interaction with main memory 210 in performing the
steps necessary to establish homographic correspondences
between images, and then further process those images as
detailed above. Thus, in a representative implementation, a
reference image is stored in buffer 212, and a target image
in buffer 212,. Analysis module 245 determines the projec-
tive transformation parameters relating the reference and
target images, and identifies pixels in each of the images
corresponding to common subject matter (that is, the
reference-image and target-image pixels related to one
another by the projective transformation, and which exhibit
relatively low variation in E). Analysis module 245 then
combines these pixels in a manner that enhances detail. For
example, the common image portions can be stored in a
separate buffer at a higher resolution, or the pixels averaged
to provide greater accuracy at the same resolution. In the
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latter case, analysis module 245 can be further configured to
combine the processed overlapping pixels with non-
overlapping pixels from both images in order to produce a
composite image of larger spatial extent (and pixel
dimension) than either component image alone, storing the
composite image in memory 210 for viewing on display 234.
Analysis module 245 can also be configured to store, in
memory 210, the numerical projective-transformation
parameters for presentation to the user over screen display
234

In one embodiment, analysis module 245 approximates
the projective coordinate transformation parameters using
the optical-flow procedure (Equation 6, followed by the
four-point approximation). Alternatively, analysis module
245 comprises hardware or software means for generating
an optical flow field relating the two images, and derives the
parameters using the optical-fit procedure.

Through pairwise analysis of multiple images, analysis
module 245 can recover the orbit relating these images as
outlined above. Responding to commands entered by the
user over keyboard 230 or position-sensing device 232,
analysis module 245 utilizes the orbit to process any of the
analyzed images into a modified image consistent with the
orbit.

Finally, analysis module can be instructed to assess a
reference image stored in one of the buffers 212 against a
series of images in image database 210 to find images
containing common subject matter.

It will therefore be seen that the foregoing represents a
highly extensible and advantageous approach to relating and
combining multiple related images. The terms and expres-
sions employed herein are used as terms of description and
not of limitation, and there is no intention, in the use of such
terms and expressions, of excluding any equivalents of the
features shown and described or portions thereof, but it is
recognized that various modifications are possible within the
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scope of the invention claimed. For example, the various
modules of the invention can be implemented on a general-
purpose computer using appropriate software instructions,
or as hardware circuits, or as mixed hardware-software
combinations (wherein, for example, pixel manipulation and
rendering is performed by dedicated hardware components).

What is claimed is:

1. A method of aligning a plurality of images having
common subject matter, each image being encoded as an
ordered set of pixels each having at least one associated
pixel parameter, the method comprising:

a. featurelessly approximating parameters of a projective
coordinate transformation that spatially relates, in first
and second images, pixels corresponding to common
subject matter therebetween;

b. applying the parameters to the first image to thereby
transform it into a processed image, the common sub-
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ject matter encoded by pixels in the processed image
being substantially spatially consistent with the com-
mon subject matter encoded by pixels in the second
image; and

c. aligning the images by combining the pixels corre-
sponding to the common subject matter.

2. The method of claim 1 wherein the parameters are

approximated according to steps comprising:

a. for each of a plurality of pixels in the first image,
defining a model velocity u,,,, v,, that quantifies, in each
of two orthogonal directions, allowable deviations in a
pixel parameter according to the projective coordinate
transformation;

. for each of the plurality of first-image pixels, defining
a flow velocity u, v, that expresses, in each of two
orthogonal directions, the actual deviation in the pixel
parameter between the first-image pixel and a plurality
of pixels in the second image; and

c. locating, for each of the plurality of first-image pixels,
a corresponding second image pixel such that the
squared sum of differences between u,,, v,, and up, vofor
all of the plurality of first-image pixels and all corre-
sponding second-image pixels is minimized.

3. The method of claim 1 wherein the parameters are

approximated according to steps comprising:

a. generating an optical flow field comprising flow veloci-
ties relating pixels in the first image to corresponding
pixels in the second image; and

b. regressively approximating, from the flow field, param-
eters of a projective coordinate transformation consis-
tent with the flow field.

4. The method of claim 2 wherein the squared sum of

differences is given by
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5. The method of claim 2 wherein the plurality of pixels
in the first image are the four corners of a pixel bounding
box.

6. The method of claim 1 further comprising the steps of:

d. sampling each of the first and second images at a first
sampling frequency to produce initial sets of pixels
encoding the images at an initial resolution;

e. performing step (a) on the pixels at the initial resolution
to identify subject matter common to the first and
second images;

f. sampling each of the first and second images at a second
sampling frequency to produce subsequent sets of
pixels encoding the images at a higher resolution; and

g. performing steps (a) and (b) on the pixels.

7. The method of claim 1 further comprising the steps of:

d. following transformation of the first image into the
processed image, repeating at least once steps (a) and
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(b) on the processed image to transform the processed
image into a reprocessed image; and

e. deriving a new set of transformation parameters based
on transformation of the first image into the processed
image and transformation of the processed image into
the reprocessed image.

8. The method of claim 7 further comprising repeating
steps (d) and (e) on different versions of the first and second
images, each version encoding a different resolution level.

9. The method of claim 1 wherein the second image is a
zoomed-in version of a portion of the first image, the pixels
of the first image being upsampled and combined with the
pixels of the second image by a process selected from (i) last
to arrive, (ii) mean, (iii) median, (iv) mode and (v) trimmed
mean.

10. A method of aligning a plurality of images having
common subject matter, each image being encoded as an
ordered set of pixels each having at least one associated
pixel parameter, the method comprising:

a. analyzing first and second images to identify pixels
corresponding to common subject matter therebetween
and spatially related by a first projective coordinate
transformation;

b. approximating the first projective coordinate transfor-
mation;

c. projectively transforming the first image using the
approximate projective coordinate transformation to
produce an intermediate image;

d. analyzing the intermediate and second images to iden-
tify pixels corresponding to common subject matter
therebetween and spatially related by a second projec-
tive coordinate transformation;

e. approximating the second projective coordinate trans-
formation;

f. accumulating the approximate projective coordinate
transformations into a composite transformation relat-
ing the first image to the second image;

g. applying the composite transformation to the first

image to thereby transform it into a processed image,

the common subject matter encoded by pixels in the
processed image being substantially spatially consis-
tent with the common subject matter encoded by pixels
in the second image; and
aligning the images by combining the pixels corre-
sponding to the common subject matter.

11. Apparatus for aligning first and second images having
common subject matter comprising:

a. first and second computer memories for storing each
image as an ordered set of pixels each having at least
one associated pixel parameter;

b. analysis means for featurelessly approximating param-
eters of a projective coordinate transformation that
spatially relates pixels corresponding to common sub-
ject matter of the first and second images; and

c. image-processing means for (i) applying the parameters
to the contents of the first computer memory to thereby
transform them into a processed image, the common
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subject matter encoded by pixels in the processed
image being substantially spatially consistent with the
common subject matter encoded by pixels in the second
computer memory, and (i) aligning the images by
combining the pixels corresponding to the common
subject matter.

12. The apparatus of claim 11 wherein the analysis

module is configured to approximate the parameters by:

a. for each of a plurality of pixels in the first computer
memory, defining a model velocity u,, v, that
quantifies, in each of two orthogonal directions, allow-
able deviations in a pixel parameter according to the
projective coordinate transformation;

b. for each of the plurality of pixels in the first computer
memory, defining a flow velocity u,, v, that expresses,
in each of two orthogonal directions, the actual devia-
tion in the pixel parameter between the pixel in the first
computer memory and a plurality of pixels in the
second computer memory; and

c. locating, for each of the plurality of pixels in the first
computer memory, a corresponding pixel in the second
computer memory such that the squared sum of differ-
ences between u,,,, v,,, and u,, v, for all of the plurality
of pixels in the first computer memory and all corre-
sponding pixels in the second computer memory is
minimized.

13. The apparatus of claim 11 wherein the analysis

module is configured to approximate the parameters by:

a. generating an optical flow field comprising flow veloci-
ties relating pixels in the first computer memory to
corresponding pixels in the second computer memory;
and

b. regressively approximating, from the flow field, param-
eters of a projective coordinate transformation consis-
tent with the flow field.

14. A visual thesaurns comprising:

a. a database of images each stored as an ordered set of
pixels, each pixel having at least one associated pixel
parameter;

b. first and second computer memories for storing a
reference image and a database image;

c. analysis means for sequentially retrieving images from
the database and storing each retrieved image in the
second computer memory, the analysis means
operating, for each retrieved image, on the first and
second computer memories to detect the existence of
common subject matter between the reference image
and the database image by featurelessly determining
whether pixels from the first computer memory can be
related to pixels of the second computer memory
according to a projective coordinate transformation,
and if not, rejecting the database image as unrelated to
the reference image; and .

d. an interface for displaying database images related to
the reference image.
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