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PREFACE

The purpose of these three studies is an inguiry into the essence of the “information”
conveyed by channels of communication, and the application of the results of this inquiry
to the practical problem of optimum utilization of frequency bands. ,

In Part 1, a new method of analysing signals is presented in which time and frequency

-play symmetrica.l parts, and which contains ‘‘time analysis” and “frequency analysis” as
special cases. It is shown that the information conveyed by a frequency band in a given
time-interval can be analysed in various ways into the same number of elementary “‘quanta
of information,” each quantum conveying one numerical datum.

In Part 2, this method is applied to the apalysis of hearing sensations. It is shown

- on the basis of existing experimental material that in the band between 60 and 1 000 c/s
the human ear can discriminate very nearly every second datum of information, and
that this efficiency of pearly 50% is independent of the duration of the signals in a remark-
ably wide interval. This fact, which cannot be explained by any mechanism in the inner
ear, suggests a new phenomenon in nerve conduction. At frequencies above [ 000c¢/s
the efficiency of discrimination falls off sharply, proving that sound reproductions which
are far from faithful may be perceived by the ear as perfect, and that “‘condensed” methods
of transmission and reproduction with improved waveband economy are possible in

rinciple. -

P ‘In lfart 3, suggestions are discussed for compressed transmission and reproduction of

" speech or music, and the first experimental results obtamed with ope of these methods
are described. ‘

Part 1. THE ANALYSIS OF INFORMATION

SUMMARY

Hitherto communication theory was based on two alternative
methods of signal apalysis. One is the description of the signal as a
function of time; the other is Fourier analysis, Both are idealizations,
as the first method operates with sharply defined instants of time,
the second with infinite wave-trains of rigorously defined frequencies
But our everyday exper:ences—especmlly our auditory sensations—
insist on & dmrxptlon in terms of both time and frequency. In the
present paper this point of view is developed in quantitative Janguage.
Signals are represented in two dimensions, with time and {requency
as co-ordinates, Such two-dimensional representations can be called
“information diagrams,” as areas in them are proportional to the
number of independent data which they can convey. This is a con-
sequence of the fact that the frequency of a signal which is not of
infinite duration can be defined only with a certain inaccuracy, which
is inversely proportional to the duration, and vice versa. This
“ancertainty relation™ suggests a new method of description, inter-
mediate between the two extremes of.time analysis and spectral
analysis. Thete are certain “elementary signals’ which occupy the
smiallest possible area in the informa.tion diagram. They are haxmonic
oscillations modulated by a probability pulse,” Each elementary
SIgnaI can be considered as conveying exactly one datam, or one

“quantum of information.” Aagy signal can be expanded in terms
of these by a process which includes time anaiys;s and Founer a.ualysxs .
as extreme cases.

These new methods of analysis, which involve-Sotne’ of the inathe-
matical apparatus of quantum theory, are dlustratcd«hy application
to some problems of transmission theory, ‘such. as direct generation
of single sidebands, signals transmitted in minimum time through
limited frequency channels, frequency modulatnon and txme-dmsxon
muftiplex telephony. S 4
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(1) INTRODUCTION

The purpose of this study is to present a method, with some
new features, for the analysis of information and its transmission
by speech, telegraphy, telephony, radio or television. While
this first part deals mainly with the fundamentals, ‘it will be
followed by applications to practical problems, in ‘parti¢ylar to
the problem of the best utﬂlzanon Uf frequency channe!s'”"*

The principle that the rransrm531m of a ‘cestdin amoﬁ:ﬁ't of
information per unit time requn:cs “certam.mmmﬁm jave-
band width dawned graduaﬁy upon communi’canl en‘gineers
during the third decade of this century.” " Simitarly, 4s 1 .f1e prin-
ciple of conservation of energy emerged from the slowa ha‘.Neumg
conviction of the impossibility of a perpetuﬂm inabzfe tl’.ﬁ& flmda-
mentx! principle of commuinication cngmeenng ‘atdse from he
refutation of i ingenious attempts to break the a3 oy yef"unfonnu- .
lated law. When in 1922 John Carson!-i, dnproved *the claim
that frequency modulation could economize some of the band-
width required by amphtude—modulat:on methods, he added
that all such schemes *are believed to involve a fundamental
fallacy.” This conviction was soon cast into a more solid shape
when, in 1924, Nyquist!2 and Kilpfmiiller!-3 independently
discovered an important special form of the principle, by proving
that the number of telegraph signals which can be transmitted
over any line is diréctly proportional to its waveband width. .
Int 1928 Hartley!4 generalized this and other results, partly by
inductive reasoning, and concluded that “the total amount of
information which may be transmitted . . . is proportional to
the product of frequency range which js transmitted and the
time which is available for the transmission.”

Even before it was announced in its general form, an applica-

]
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tion was made of the new principle, which remains to th1s.day
probably .its most important practical achievement. In 1927,
Gray, Horton and Mathes!-S gave the first full theoretical dis-
cussion of the influence of waveband restriction on the quality
of television pictures, and were able to fix the minimum wave-
band requirements in advance, long before the first high-definition
system was realized. In fact, in this as in later discussions of
the problem, the special Nyquist~Kiipfmiiller result appeats to
have been used, rather than Hartley’s general but somewhat
vague formulation.

The general principle was immediately accepted and recognized
as a fundamental law of communication theory, as may be seen
from its discussion by Liischen!6 in 1932 before this Institution.
Yet it appears that hitherto the mathematical basis of the prin-
ciple has not been clearly recognized. Nor have certain practical
conclusions been drawn, wh1ch are suggcsted by a more ngorous
formulation.

{2} TRANSMISSION OF DATA
Let us imagine that the message to be transmitted is given in
the form of a time function s(f), where s stands for *‘signal.”
Unless specially stated, s will be assumed to be of the nature
of a voltage, current, field strength, air pressure, or any other
“linear’* guantity, so that-power and energy are proportlonal
to its square, We assume that the function s{f) is given in some

time interval ry — #, = 7, as illustrated in Fig. 1.1. Evidently
; s](t) .
] 1
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Fig. 1.1.—Signal as a function of time. .

this message contains an infinity of data. We can divide T into,
say,. ﬁfub-m{ervals and define, for instance, the average ordinate

n ,su‘b-mterval as a **datum.” If there is no limit to the-
subadivi s;on there 5 no limit to the number of data which could
be tr mitted in an absolutely faithful reproduction,

A's this xs;mposmblc. let us sec whether it is possible to ’Lransrmt
faxthf‘tﬂ'!y at Jeast a finite " numbcr N of data. Evidently there is
an infnite number of possibilities for specifying the curve s(z)
in the. interval T approximately by N data. Without knowing
the spec:ﬁc purpose of the transmission it is impossible to decide
which is the most economical system of selection and specifica-
tion. Yet,certain methods will recommend themselves by reason
of their andlytical simplicity. One of these, division into equal
sub-intervals, has been already mentioned. Another method is
to replace the curve s(#) in the interval = by a polynomial of

order N, to fit it as closely as possible to s{f) by the method of

least squares,- and to take the coefficients of the polynomial as
data. It is known that this method is equivalent to specifying
the polynomial in such a way that its first ¥ “‘moments™ M,
shall be equal to those of s(r).—

T T T T
MO = jsd’ M[ = J-I,S‘dt Mz = |flsdt . .. MN"“ = ij“]Sdf
o g G 0

Instead of the coefficients of the polynomial, we can also con-
sider these moments as the specified data.
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A method ciose]y related to this is the following. Expa;-‘l\ 9
5(r), instead of in powers of time, in terms of a set of N fund W
tions ¢, (s), orthogonal in the interval 0 < t < 7, and consids %
as data the N coefficients of expansion. It is known that t}
is equivalent to fitting the expansion to s(#) by the method ot
least squares.* How close the fit will be, and how well it wi\l
suit the practical purpose, depends on the set of functicn
selected.,

One class of orthogonal functions, the simple harmonic fur¢—
tions sine and cosine, have always played a preferred part in
communication theory. It is shown in Appendix 9.1 thek

" there are good reasons for this preference other than the

elementary character, [et us now develop the curve s{f) in thi
interval T into a Fourier series. This gives an infinite sequence
of spectral lines, as shown in Fig. 1.2, starting with zero freg’/
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Fig. 1.2.—Fourier spectrum of signal in an interval z.

quency, all equally spaced by a frequency 1/». Two data ar¢
associated with each frequency, the coefficients of the sine an.‘
cosine terms in the expansion.  In a frequency range (f; —+
there are therefore (f; — fi)r lines, representing 2(f; — fi»
data, that is exactly two data per unmit time and wnit frequens.. {
range.

‘This, in fact, proves the fundamental principle of communig
tion. In whatever ways we select N data to specify the sign
in the interval T, we canno! transmit more than a numb.s
Af, — fi)r of these data, or of their independent combinatio
by means of the 2(f, — f,)7 independent Fourier cocfficients.

In spite of the extreme simplicity. of this proof, it leaves ..
feeling of dissatisfaction. Though the proof shows clearly the
the principle in question is based on a simple mathematice |
identity, it doss not reveal this identity in a tangible forlm
Besides it leaves some questions unanswered: What are the
effects of a physical filter? How far are we allowed to sub-divicd e
the waveband or the time interval? What modifications woulJ
arise by departing from the rigid prescription of absolute ind=-
pendence of the data and allowing a limited amount of- mutc e
interference? It therefore appears worth while to approach t't\e
problem afresh in another way, which will take oons1derat*\1
more space, but which, in addition to physical insight, gives T»
answer ig the questions which have been left open.

(2.1} -Time and Frequency

The greatest part of the theory of communication has bet
built up -on the basis of Fourier’s reciprocal integral relation

() = F(-f')éﬁ-ﬂb'rdf St = j ;z)e—2ﬂfﬂdr R ¢ ¥

et

* Cfep. CHURCHILL RueL V.: “Fourier Series and Boundary Value Probles
(McGraw Hill, 1941}, p. 40, This bowk contains an introduction to the theory
orthogonal fuactions.

t The notations vsed will follow in the main those of Campbeil and Foster.™* 7
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where s(2) and S(f) are a pair of Fourier transforms. We will
refer to S(f) also as the “spectrum” or.5(#).

- Though mathematically this theorem is beyond reproach, even
experts could not at times conceal an uneasy feeling when it
came to the physical interpretation of results obtained by the
Fourier method. After having for the first time obtained the
spectrum of a frequency-modulated sine wave, Carson wrote:i.!
“The foregong solutions, though unquestionably mathematically
correct, are somewhat difficult to reconcile with our physical
intuitions, and our physical concepts of such ‘variable-fre-
quency’ mechanisms as, for example, the siren.”

The reason is that- the Fourier-integral method considers
phenomena in an infinite interval, sub specie aeternitatis, and

this is very far from our everyday point of view. Fourier’s .

theorem makes of descriptiont in time and description by the
spectrum, two mutually exclusive methods. If the term *fre-
quency’’ is used in the strict mathematical sense which appiies
only to infinite wave—trains, a “‘changing freque

contradiction_j ms, as it is a state i i 'rne

and frequen

The termmology of physics has never completely adapted itseif
to this rigorous mathematical definition of “frequency.”” In
optics, in radio engineering and in acoustics the word has retained
much of its everyday meaning, which is in better agreement with
what Carson called “our physical intuitions.” ¥For instance,
speech and music have for us a definite *‘time pattern,”” as well
as a frequency pattern. It is possible to leave the time pattern
unchanged, and double what we generally call “frequencies” by
playing a musical piece on the piano an octave higher, or con-
‘versely it can be played in the same key, but in different time.
Evidently both views have their limitations, and they are com-
plementary rather than mutually exclusive. But it appears that
hitherto the fixing of the limit was largely left to common sense.
It is one of the main objects of this paper to show that there
are also adequate mathematical methods available for this
purpose.

Let us now tentatively adopt the view that both time-and

frequency are legitimate references for describing 2 signal, and
illustrate this, as in Fig. 1.3, by taking them as orthogona! co-

—y
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Fig. 1.3.—Unit impulse (delta function) and infinite sine wave in
timeffrequency diagram.

ordinates. In this diagram a harmonic oscillation is represented.
by a vertical line. Its frequency is exactly defined, while its
epoch is entirely undefined. A sudden surge or *“*delta function’’t
{(also called **unit impulse function’), on the other hand, has a
sharply defined epoch, but its epnergy is uuiformly distributed
over ‘the whole frequency spectrum. This signal is therefore

* Carson proposed the concept of a “generalized frequcncy" in 1922, and in 1937
elaborated it further with T. C. Fry under the name of “instantancous frequency”
{Ref. Mo. 1.8). This is a useful dotion for stowly-varying frequencies, but not sufficient
1o cover all cases in which physical fecling and the Founer integral theorem are
at variaoce.

1 Campbell and Foster call this an 50 function, but the name “delta function™ as
used by Dirac has now wider currency.
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represented by a horizontal line. But how are we to represent
other signals, for instance a sine wave of finite duration?

In order to give this question a precise meaning we must
consider the physical effects which can be produced by the signal.
The physical meaning of the s(¢) curve, shown at the left of

Fig. 1.4, is that this is the response of an ideal oscillograph
—f —=f
o ﬁsw S j{!s“fn =

Y S : : N
. ISP TIPS,

ARLLLRALRLARL LR . \

. {
- X P AR TTTrTOTY
RITZ T T
£ &

Fig. 1.4.—Timeffrequency diagram of the response of physical instru-
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{b) Bank of reeds

which has a usiform response over the whole infinite frequency
range. The interpretation of the Fourier spectrum, shown at
the bottom of the same figure, is somewhat less simple. It could
be obtained by an infinite number of heterodyne receivers, each
of which is tuned to a sharp frequency, and connected with an
indicating instrument of infinite time-cobstant. To simplify
matters we take instead a bank of reeds, or other resonators,
each tuned to a narrow waveband, with equally spaced resonant
frequencies. It is known that such an instrument gives only an
analysis of the energy spectrum, as it cannot distinguish phases,
but this will be sufficient for the purpose of discussion. Let us .
compare this instrument with a real oscillograph, which responds
only to a certain range of frequencies (f; — f;). For simplicity
it has been assumed in Fig. 1.4 that the bank of reeds extends
over the same range, and that the time-constant of the reeds is
about.equal to the duration of the signal.

We know that any instrument, or combination of instruments, -
cannot obtajn more than at most 2(f, — f{)r independent data -
from the area (f, — f})7 io the diagram. But instead of rigor-
ously independent data, which can be obtained in general only
by calcula_'tion from the instrument rcadings, it will be .moye
convenient for the moment to consider ““practically” indepen-
dent ‘data, which can be obtained by direct readings. For any
resonator, oscillograph or reed, a -damping time sav; he defined,
after which oscillations have decayed vy, say; 10 db. Similarly
one can define a tuning width as, say, the number of cycles off
resonance at which the response falls off by 10db. It is well
known that in all types of resonators there isa reiatxon between
these two of the form: :

Decay time X Tumng w:dth Numbm of t.. m'dér one.

. This ./means that for every type of resonator,a characteristic
rectangle of about unit area can be defined in the time/frequency
diagram, which corresponds to one “practically’” independent
reading of the instrument. In order to obtain their number.
we must divids up the (timé X frequency) area into such rect-
angles. This is illstrated in Figs.'1.4(a) and 1.4(6). In the
case of the oscillograph the rectangles are broad horizontally
and narrow  verticatly; for the tuned reeds the reverse. The
amphtude “of the readmgs is indicated by shading of different

. density.: ’Negath amphtudes are indicated by shading of
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opposite inclination. We will return later to the question of a
suitable convention for measuriog these amplitudes,*
Without going into details, 1t is now evident that physical

instrumenis analyse the time-frequency diagram into rectangles

which have shapes dependent on the nature of the instrument
and areas of the order unity, but not less than one-half. The
number of these rectaogles in any region is the number of inde-
pendent data which the instrument can obtain from the signal,
i.e. proportional to the amount of information. This justifies
calling the diagram from now on the “diagram of information.”

We may now ask what it is that prevents any instrument from
analysing the information area with an accurm.y ‘of iess than a
half unit. The ultimate reason for this is evident. We have
made of a function of one variable—time or frequency-—a func-
tion of two variables—time and frequency. This might be
considered a somewhat artificial process, but it must be remem-
bered -that it corresponds very closely to our subjective inter-
pretation of aural sensations, Indeed, Fig. 1.4(5) could be
considered as a rough plan of analysis by the ear; rather rough,
as the ear is too complicated an instrument to be replaced by a
bank of tuned reeds, vet much closer than either the oscillogram
or the Fourier spectrum. But as a result of this doubling of
variables we have the strange feature that, although we can
carry out the analysis with any degree of accuracy in the time
direction. or in the frequency direction, we cannot carry it out
.simultaneously in both beyond a certain limit. This strange
character is probably the reason why the familiar subjective
pattern of our aural sensations and their -mathematical inter-
pretation have hitherto differed so widely. In fact the mathe-
matical apparatus adequate for treating this diagram in a
quantitative way has become available only fairly recently to
physicists, thanks to the development of quantum theory.

The linkagze between the uncertainties in the definitions of
“‘time’’ and “frequency’’ has never passed entirely unnoticed by
physicists. - It is the key to the problem of the ‘“‘coherence
length’’ of wave-trains, which was thoroughly discussed by
-Somimerfeld in 1914.4 But these problems came into the focus
of physical interest-only with the discovery of wave mechanics,
and especially by the formulation of Heisenberg’s principle of
indeterminacy in 1927. This discovery led to a great simplifica-
tion in the mathematical apparatus of quantum theory, which
was recast in a form of whlch use will be made in. the pr&cent
paper.

‘The essence of this method«-due to a consxderable part to
W, Paulit—is a re-definition of all observable physical quantities
.-such. a form that the physical uncertainty relations which

-

obtam between them appear as direct consequcnces of a mathe--

matical 1dent1ty
) JAAfT (1.2

At Jnd Af are here the uncertamtlcs mhercnt in the definitions
of the epoch 1 and the frequency f of an oscillation. The
identity (1.2) states that £ and f cannot be simultaneously defined
in an exact way, but only with a latitude of the order one in
the product of uncertainties.

Though. this 1nterpretation of Hexsanbergs principle is now

. .
. \

» Note added Tth February, 1946. Aninstrument called the “Souad Spectrograph’
s been diveloped by the Bell Telephone Laboratories for the recording of sound
miterny’ m two-dimensional form. The ﬁrs! publications have just appeared;
> K.: “Visible Patterns of Sound,” Science, 9th November, 1945 and

Vm. 1 Spcech." Bell Loboratories Record, Ja.nuary 1946.

1 “SOMMERFELD, A..: Annalen der Physik, 1914, 48. p, 777,

Anather ficld of classical physics in w an uncerwicy .elation is-of great
mportance is Brownian mouop. Cf. FirTH, R.: "On Some Relations between
Classical Statistics aad Quantum Mochamcs."Zeu.rchrrﬂ far Physik, 1933, 81, p, 143,
md Bounigawp, G.: “Relations d'locertitude en Géometric et en Phys:que"
Hermann et Cie, Pans 1934).

1 PauLl, W.: “Handbuch der Physik,” vol. 24/1, 2nd ed. (Berlin, 1933}, "A very
ucid exposition of quantum mechanics on these lines iy given by Tormaw, R. C.:
“The Principles of Statistical Mechanics” (Oxford, 1938), pp.-189-276. “In Dirac’s
ystem Paull's postulates appear as results, derived from nnother set.of postulates,
of. Dirac, P. A, M, : “Quanium Mechanics,” 2nd ed. (Oxford, {938), p. 103,
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widely known, especially -thanks to popular expositions of
quantum theory,* it appears that the identity (1.2} itself has
received less attention than it deserves. ' Following a suggestion
by the theoretical physicist A, Landé, in 1931 G, W, Stewart
brought the relation to the notice of acousticians, in a short
notef—to which we shall return in Part 2—but apparently
without much response. - In communication theory the intimate
connection of the identity (1.2) with the fundamental principle of
transmission appears to have passed unnoticed.

Perhaps it is not unnecessary to point out that it is not intended
to explain the transmission of information by means of quantum
theory. This could hardly be called an explanation. The fore-
going references are merely an acknowledgment to the theory
which has supplied us with an important part of the mathe-
matical methods. :

~ {3) THE COMPLEX SIGNAL -

In order to apply the simple and elegant formalism of quantum
mechaumics, . it~ will be convenient first to express the mgna!
amplitude s(¢) in a somewhat different form.

It has long been recognized that operations with the complex
exponential e/*—often called cis we—have distinct advantages
over operations with .sine or cosine functions. There are two
ways of introducing the complex exponential. One is- to write

|08 wi = elwt + eI sin wt = 21; {efor — g~Jury | (1.3)
This means that the harmonic functions are replaced by the
resultant of two complex vectors, rotating in opposite dlrﬁCthﬂS
The other way is to put .

Qf(el‘-") sm-wr -—Q?(jei"") A ¢ Y3

Tn this method the harmonic functions are replaced by the real
part of -a single rotating vector. Both methods have great
advantapges against operation with real harmonic functions,
Their relative merits depend on the problem to which they are
applied. In modulation problems, for instance, the advantage
is with the first method. On the other hand, the formalism of
quantum mechanics favours the second method, which we are
now going to follow, This means that we replace a real signal

COs, 0)1

of the form _ _ .
sy =acoswt + bsinewt . . .- {1.5)

by a complex time function
() = s(1) + jo(r) = {a — jbjeset (1.6)

which is formed by adding to the real signal s(+) an imaginary
signal jo(7). The function o(t) is formed from s(#) by replacing
cos wi by sin wt and sin w? by — cos. wt. The function o(¢f) has
a simple significance. It represents the signal in quadrature to
s(f) which, added to it, transforms the oscillating into a rotating
vector. If, for-ipstance, s(7) is applied to two opposite poles of
a four-pole armature, o) has to be applied to the other pair in
order to produce a rotating field.

If s{¢) is not a simple harmonic function, the process by which
y(#) has been obtained can be readily generalized. We have
only to express 5(¢) in the form of a real Fourer integral, replace
every cosine in it by &/, and every sine by — je/¢, This
process becomes very simple if, instead of sine-and cosine
Fourier integrals, the complex (cisoidal) Fourier integrals are

» ScuR&DINGER, E.: “Science a.nd Lhe Humnn Temperament” (All:n and Unwin,
1935), pp. 126-129. LmpEMANN, F. A.: “The Physical Significance of Quantum
‘Theory' (Oxford 1932), pp. 126-127. DARW'EN, C. G.: “The New Conceptions of

Matter” (G. Bell and Seas, 1931); pp. 78-102..

T STEWART, G.-W.: Re f. No. 1.9,

A, Landa has made use of acoustical examples to illitatrate the uncertainty relation
{n his “Vorlesungen itber Wellenmechanik"’ Akad:zmsche Verlagsgcs (Lclpzlg, 1930),

pp. 1720,
‘A
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used according to equation {1.1). In this case the passage from
5(1) 1o (1) is equivalent to the instruction: Suppress the ampli-
tudes belonging to negative frequencies, and multiply the amplitudes
of positive frequencies by two. This can be readily understood
by comparing equations {1.3) and (1.4).

Though the Fourier transform of (s) is thus immediately
obtained from the Fourier transform of s5{2), to obtain «(z) itself
vequires an integration. It can be easily verified that the signal
u(t) associated with s(2) is given by the integral

This is an improper integral, and is to be understood as an
abbreviation of the following limit .

e[ ]

which is called ‘“Cauchy’s principal value’ of an improper

a.n

integral.* To verify equation (1.7) it is sufficient to show that
it converts cos wt into sin wt and sin wi-into — cos wt. Con-
versely s(f) can be expressed by (1) as follows:—

() = — — (1.8)

—

Associated functions s{f) and o(f) which satisfy the reciprocal
relations (1.7) and (1.8) are known as a pair of **Hilbert trans-
Jorms.”'t
-Pairs of signals in quadrature with one another can be generated
by taking an apalytical function. f(z) of the complex variable
z = x + jy, which can be expressed in the form f(z) = u(x,y)
+ ju(x,y). Provided that there are no poles at one side of the
x-axis (and if certain other singularities are exciuded), u(x,0)
and »(x,0) will be in quadrature. The function ¢/ is an example
which gives u(x J0) = cos x and »(x,0) = sinx. It follows that,
as the real axis is in no way distinguished in the theory of
analytical functions of a complex variable, we can draw any
_straight line in the complex plane which leaves all the poles at
one side, and the values of the two conjugate functions along
this line wxll give a pair of functions in quadrature.
An example of two functions in quadrature is shown in
Fig. 1.5. In spite of their very different forms they contain the

‘ Fig. 1.5. Example of sxgna]s in quadraturc

same spectral components. It‘ these funcuons were to represent
amplitudes of sound waves, the ear “could not distinguish one
from :the other.}

- A mechanical device for generating the associated sxgnal a(t)
to.a given signal 5(7) is described in Appendix 9.2, which contains

also a discussion of the problem of single-sideband generation.

;SWH'&"!'AKhR E. T.,and Warson, G. ﬁ.:“Modern Aﬁa_ly{sis," 4th ed. (Cambridge},
P- + Cf. Trrermarse, E. C.:
(Oxford 1937).

% Provided that Ohm s, law of hearing holds with sufficient accurzcy. Such
sociated signals could be used for testing the limits of validity of Ohm’s law,

VoL, 93, Part IIL

- “Introduction to the Theory of Fourier Integrals™

- The asterisk denotes. the'conjﬁgate complex value.
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(4) EXACT FORMULATION GOF THE UNCERTAINTY
RELATION

By means of the complex signal (/) it is now easy to framé
the uncertainty relation in.,a quantitative manner, using the
formalism of quantum mechanics. In order to emphasize the
analogy, the same symbol 4 has been chosen for the complex
signal as is used in that theory for the “wave™ or “‘probability”’
amphtudcs

Y(r) is the time description of the 51gnal We can associate
with this its frequency description by means of its Fourier
transform ¢(f), which will also be called the “‘spectrum’ of (r).
The two descriptions are connected by the rec1procal Fourier
relations

) =.J;;(nezujﬂdf (1.9%
' M) = J;Z,(r)e—z.-:iﬂd; (LI

In order to emphasize the symmetry, the first integral has been
also written with limits — co and co, although we have specified
(r) in such a way that () = 0 for negative frequencies; hence:
we could have taken zero as the lower limit.  As in the following:
all integrals will be taken in the limits — oo to oo, the lumts
will not be indicated in the formulae,

In Section 1 several methods have been dxscussed for specﬁy:ng
a signal by an infinite set of denumerable {(countable) data. One
of these was specification 'by moments, My, M, ... This
method, with some modifications, will be the best suited for.
quantitative discussion. The first modification is that it will be
more convenient to introduce instead of s(z)} the followmg

“weight function™:

¢*<r)¢(r) = [sO)] + [0 w1

Thd" new
weight function is therefore the sqitare of the absolute value
of ». This can be considered as the “power™ of the signal, and
will be referred to by this name in what follows. . A second,
convenierit modification is that, instead of with the moments
themselves, we shall operate with their values divided by My,
i.e. with the following quotients :—

g, fpgd e
77 R 72 "

These are the mean values. of the- “epoch“ r of the sxgnal of,
orders'1,2 . n.. .. The factor # has been placed between.
the two amphtude factors to emphasme the symmetry of the
formulas with later ones. By a theorem of Sualtjes, if all mean
values are known, the weight function J*y = [:/;[2 is also deter-.
mined, apart from a constant factor. The signal  itself is-
determined only as regards absolute value; its phase remains
arbitrary.. This makes the method particularly suitable, for
instance, for acoustical problems, In others, where the phase.
is observable, it will not be difficult to supplement the qpeciﬁcam
tion, as will be shown later.

Smularly we define mean frequencxes f" of the - q1gnal as.
follows:—

T
g T T g

It now becomes evident why we had to introduce a complex-
signal in the previous Section. If we had ‘operated with the real
signal s(#) instead, the weight function would have been even,
and the mean frequency f always zero. This is one of the
27

(1.12)

(11)
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points on which physical feeling and the usual Fourier methods
are not in perfect agreement, But. 'we could eliminate the
negatlwe frequencies, only at the price of introducing a complex
signa

As by equations (1.9} and (1. 10) Y and ¢ mutually determme
one another, it must be possible to express the mean frequencies
by 4, and, conversely, the mean epochs by ¢. This can be done

indeed very simply by means of the following elegant reciprocal
relations :—

[frpdt = [grdf . . (114
[ = (E:Tj)nJ-gb*g;ﬁbdt (1.15)
P s = (%)_"Jqs-gj_;wf . (1.16)

The first of these, (1.14), is well known as the “Fourier energy
theorem®’ (Raylmgh, 1889). . The other relations can be denvcd
‘ from the identityt

SO0t = [i(£)bl— S (1.17)

by partial integration, assuming that i, gS and all their denva-
tives vanish at infinity, -

These very useful reciprocal relations can be summed up i
the féllowing simple instructions. When if i8"desired to express
one of the mean values (1. 12) by mtegrals over frequency,

1 d
27 df.
This can be called “translation from time Ianguage mnto fre-
. quency language.”” Conversely, when doing the inverse trans-
'laltmn, teplace q!o by :[: and the frequcncy S by the operator
 2mjdr
© quantum mechanics: Replace in classical equations the momen-

replace @ by ¢, and the quanmy t by the operator -

This corresponds to the somewhat mysterious rule of

J—‘— 0 —, where. x is the co—ordmate
2af %"
) comugate to the momentum P, Actually itisno more rnystenous
than Heaviside’s instruction: “Replace the operator didt by p,'."
" which has long been f‘arruhar to electrical engmeers '
Applymg the rule

fum. px by the operator

M“—*ﬁdf ‘

. e T
to a srmple c1so1dal function i = cis 2mfye, we obtam the
value £, for the" mean frequency £, and similarly /7 = f3. " 'The

' mean epochs i7, on the other’ hand, are zero for odd powers and
infinite for 't ‘even’ powers n>1r- * The cisoidal fanction is to be
conmdered as a limiting case, as the theory is correctly apphcable
only’ to” signals of finite duratton -and’ with frequency spectra
which do not extend to mﬁmty, a con¢txon whxch 1s fulﬂﬂed
by all real; physical slgnals '

- These deﬁmtxons and rules’ enable us to formulate the un-
certaunty relation quanntatwcly ‘Let us consider 2 finite signal,
such as is shown, for example, in Fig. 1.6, - Let us first fix the
mean epoch and the mean frequency of the 81gnal by means
of equations (1:12) and-(1.13) or (1.I8). . These, however, do
not count as data, as in a continuous transmission there will

e . (118

be some signal strength at any instant," and at any frequency. .

Weé consider f and f as references, not as data. The first two
data wiil be therefore determined by the mean—square values of

'epoch and frequency, ie.
¢*t25bdt

g

1 Cf. CamposLl and Fostir: Reference 1.7, p. 39,

(1-1'9),

_scgle
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LS ' i dt/f
1 j Vbt 1 J’ i
Qm2 j.;.*.;,dr T @ER it

- v

2= 02%dS
' f¢rgaf

(1.20)

The second of these has been first translated into “time lan-
guage,’® as explainied, and transformed by partial integration to
put its essentially positive character into evidence. ’

It may be noted that /2 and £2 dnd in general all mean values
of even order, remain unaltered if the real signal s(s) or its
associate, o(f); is substituted in the place of (2} = s(£) + jo(O).
Hence in the following we -could .again use the real instead of
the complex signal, but ¢ will be retained in order to simplify
some of the anaIytncal expressions and to emphasize the similarity
with the formulas of quantum mechanics.

We now define what will be called “the effective duration™ Ar
and the “effective frequency width” Af of a srgnal by the
followmg equatlons '

Azs[zér(—z-f)q* O ¢ 4)
© Af =[24F- R (1.22)

In words, the eﬁ'ectwe duration is defined as 4/ (217) times the
r.m.s. deviation of the signal from the mean epoch 7z, and the
effective frequency width similarly as +/(2w%) times the r.m.s.
deviation from f. The cho1ce of the numencal factor \/ (Zr)
will be'justified later.

Using the identities

GER=ER F-fR=2- P

At and Af can be expressed by means of (1.19) and (1.20).
The expressions are greatly simplified if the origin of the time
scale is shifted to 7, and the origin of the frequency scale to /.
Both transformations are effected by introducing a new time
_ _ T=t~F . . . i .. . (123
and a new signal amplitude ‘
W) = gl;(l)e"z“lf T (1 24)

Expresmng ! and \l- by the new quantities 7 and ‘F 1t is found
that, apart from a numerical factor 2m, (Af)?2 and (Af)? assume
the same form as equatlons (1.19) and (1.20) for #2 and f2.
Multiplying the two equanons we obtain

1 j"I’*'r ‘FdTJ.‘%— %fd
(AAS? = [ T 12

But, by a mathematical identity, a form of the "Schwarz
mequahty" due to Weyl and Pauli,i the expression in brackets
is always larger than unity for any function W for which the
mtegrals exist. We obtam therefore the uncertamty relatlon
in the rigorous form -

- , ArAf >t ., . L a 26)

Thls is. the mathematical identity which is"at the root of the
fundamental principle of communication. We see- that the
r.ms, duration of a signal, and its r.m.s. frequency-width define
a minimuin -area in the information diagram. How large we
assume this minimum area depends on the convention for the
numerical factor. By choosing it as 4/(27) = 2-506 we bave
made the number of elementary areas in any large rectangular

WEvL, H.: “The Theory of Groups and Quantum Mechanics’ (Methuen, London,
1% }1)1. pp. 77 and 393 Cf also TOLMAN, R. C.: loc. cxt, p. 235, and Appemhx 9.3
of this paper. -
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region of the information diagram equal to the number of
independent data which that region can transmit, according to
the result obtained in Section 1.

© Relation (1.26) is symmetrical in time and f{requency, and it
suggests that a new representation of signals might be found in
which ¢ and f played interchangeable parts. Moreover, it
suggests that it might be possible to give a more concrete inter-
pretation to the information diagram by dividing it up into
“‘cells” of size' one half, and associating each cell with an
*‘elementary signal’® which transmitted exactly one datum of
information. This programme will be carried out in the next
Section.

(5 THE ELEMENTARY SIGNAL
The mathematical developments up to this point have run
rather closely on the lines of quantum mechanics. In fact our
- resuits could have been formally obtained by replacing a co-
ordinate x by 7, the momentum p by f, and Planck’s constant A
by unity. But now the ways part, as questions arise in the
theory of information which are rather different from those
which quantum theory sets out to answer,
. The first problem arises directly from the inequality (1.26).
Whatis the shape of the signal for which the product ArAf
actually assumes the smallest possible value, i.e. for which the
inequality turns inlo an équality? :

The derivation of this sigoal form js contained in Appendix 9.3;
only the result will be given here, which is very simple. The
signal which accupies the minimum area AtAf = } is the modu-
lation product of a harmonic oscillation of any frequency with a

. puise of the form of a probability function, In complex form

Y(f) = e~e® U~ cis 2mfyt + ) - (1.27)
w, t,, fp and ¢ are constants, which can be interpreted as the
“sharpness”. of the pulse, the epoch of its peak, and the fre-
quency-and phase constant of the modulating oscillation. The
- constant « is connected with Az and Af by the relations '

. m1 - 1
At = \/ (’2‘-); A= |
As might be expected from the symmetrical form of the con-

dition from which it has been denved the spectrum is of the
same analytical form

SO = e~ (@ I Gis T 2 — fo) +¢] . (1.28)
The envelopes of -Both the signal and its spectrum, or their
absolute values, have the shape of probability curves, as illus-
trated o Fig. 1:6: Their sharphesses are reciprocal.: :

“Because of its self-reciprocal character, the probability sngnal
has. always ‘played an important part in the theory of ¥Fourier
transforms. I threerecent papers, Roberts and Simmonds have
called attention to some of its analytical advantages.i-11 1.12,1.13
But its minimum property does not appear to have been recog-
" nized. Mt is this property which makes the modulated proba-
bility pulse the natural basis on which to build up an analysis
of signals in which both tlme and frequency are recogmzed as
references.

It may be proposed, therefore to calI a pulse according to
equation (1.27) an elementary signal. In the information
diagrain it may be represented by a rectangle withi sides At
and Af,and area one-half, centring on the point (5, f3). It
will be shown below that any. signal can be expanded into
elementary signals in such a way that their representative rect-
angles caver the whole time-frequency area, as indicated in

‘Fig. 1.7.. Their amplitudes can be indicated by .a number -

written-into the rectangle, or by shading. Each of these areas,
with its associated datum, represents. as it were, one elementary
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Fig. 1.6.—Envelope of the elementary signal.
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Fig. 1.7 -Representatlon of signal by logons

quantum of information, and it is proposed to call it a lagon
Expansion into elementary signals is a process of which Fourier
analysis and time description are special cases.. The first is
obtained at « = 0, in which case the elementary signal becomes
a sine wave of infinite Icngth, the second at «— co, when it
passes into a “delta function.”

It will be convenient to explain the éxpansion into elementary
signals in two steps. The first step leads to elementary areas .
of size unity, with two associated data, but it is simpler arid
more symmetrical than the second step, which takes us to the
limit of sub-division.

This first step corresponds to dms;on of the information area
by a network of lines with distances A¢ and 1fA¢ respectively, -
as illustrated in Fig. 1.8.* The clementary areas have suffixes n -

Al N | Gtk | Sroikal
AN Co ke Cn, & fn,kai"_ A
f . Sof
- A;.! Co-l.k1 | Ca-1.k ‘-';-r.tu P
.y k- helv
—~f
Fig. 1.8. -—-chrcsentauon of signal by a matrix of complex
.o amphtudes ]

" = For ect symmelry thé spucings id the networl: ought to havé been taken as
wzmugf:lrruwz)m =.{+/2)Af respectively. .-



-of k, has been brought over to the left.
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in the time direction, and & in the frequency direction. The
centre lines (horizontally) may be at s, = n Ar, assuming. for
convenience that we measure time from the “zero’-th of these
lines, The expansion is given by the following formula

D = Z Zk € €XP — 'r.r 2( ; '4)32) cis (2mkt/ A1)

(1.29)
'I'he mamx Qf the complex coefficients c,, represents the signal
in a symmetrical ‘way, as it is easy to see that if the expansion
exists we arrive—apart from a constant factor—at the same
coefficients if we expand ¢{f) instead of /().

As the elementary signals in (1.29) are not orthogonal, the

. coefficients ¢, are best obtained by successive approximations.

In the first approximation we consider each horizontal strip
with suffix # by itself, and expand the function Plo) as if the
other strips did not emst.,rm the-interval (, — ir&t) to (1; 4+ 3A0),
by putting

( — nAn?

- 1) exp w AR

- Zk ¢,y cis kel Af)

In this formula the exponential function, which is independent
We have now a
known function on the left, and a Fourier series on the right,
which by known methods gives immediately the first approxima-
tion for the coefficients c,. This represents (1) correctly in
the intervals for which the series are valid, but not outside them.
I the first approximations are added up with surnmation
indices r, there will be a cerfain error due to their overlap.
A. second approximation can be obtained by subfracting this
error from y(r) in eqn. (1.29) and repeating the procedure. It
can be expected to converge rapidly, as the exponential factor
decays so fast that only neighbouring strips » influence each
other perceptibly. .

This expansion gives ultimately one complex number ¢, for
every two eIementary areas of size one-half. The real and
imaginary parts can be interpreted as giving the amplitudes of
the fo[lowmg two real elementary signals .

‘:g; = exp — o — 10)2

where o? = {wf(Ar2. These can be callcd the “cosine-type®
and “sine-type’’ elementary signals. They are illustrated in
Fig. 1.9. We can use them to obtain a real expansion, allocating

0 2nfyt — 1) (1.30)

Fig. 1.9.—Real parts of elementary signal.

one datum to every cell of one-half area. But it may be noted
that this will have to be necessarily a more special and less sym-
metrical expansion than the previous one, as the transform of a
cosine-type elementary signal, for example, will not in general be

of the same type. As always in communication theory

description by complex numbers is formally simpler t.han
real data.

We now divide up the information plane as shown in Fxg. 1

i 4 b b
aat-F"} 50 | 9% 5| dsz 52
- AJ!_ !
;“140 549 | e | ba | G2 | bw
"'“5130 by [ ay-| ba | 8 | by
| - .
Téu | bo | o | b | o | b
Ae 1 -
Tlo " by ) ooy | by | e Alz
1 BN + } . . s Do
‘ 4L 1 ) ;
-%Ac-HéAH . —f.

Fig. 1.10. —Expansmn of arbitrary signal in cosine-type and sine-t:
elementary signals.

‘into cells of size one-half, measuring'Al in the time, and 4

in the frequency, direction, Starting from the line of
frequency, we allocate to these areas in every strip alternatel:
cosine-type and a sine-type elementary signal. Evidently -
must start with a cosine signal at f = 0, as the sine-type sig
would be zero. This leads us to the fo]lowmg expansion of |
real signal s(f):—

e

() = Zn exp —

" ;(25202 Z" [4n cos 2mk(t — nAD] A1

+ By sin 2mlk + 3t — nAD/AL] (1.0

In order to find the coefficients a,. and b, we can carry <
the same process of approximation:as cxpla.med in connecti
with expansuon {1.30), but with a difference. At the first st
we arrive at an equation of a form

fn(ﬁc) = Zk a, coskx + b, sin (k 4+ 4)x
0

.with the abbreviations x = 2m(t — nAOJAL, and f{x) = s

exp i#(t — nADYH(AHZ  But the trigonometric series on t
right is not a Fourier series. It is of a somewhat unusual tyg
in which the sine terms have frequencies mid-way between t
cosine terms. It will be necessary to show briefly. that this seri
can be used also for the representation of arbitrary functior
First we separate the even and odd parts on both sides of t

equation, by putting
.-}
Zk a,, ¢os kx
]

HI ) — £~ 9] = };k by sin Gk + 3)x

A+ fi(~ 0] =

The first is a Fourier series, but not the second. We have see
however, in Section 3, how all the frequencies contained in
function can be raised by a constant amount by means of
process which involves calculating the function in quadratu
with it. Applying this operation to both sides of the la
equation we can add ¥ to k£ + 1, and obtain the ordinary Fouri
sine series, which enables the coefficients to be calculated.

The expansion into logons is, in general, a rather inconvenie:
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process, as the elementary signals are not orthogonal. If only
approximate results are required, it may be permitted to neglect
the effect of their interference. This becomes plausible if we
consider that an elementary signal has 76-8% of its energy
inside the band Ar or Af, and only 11:6% on either side.
Approximately correct physical analysis could be carried out by
means of a bank of resonators with resonance curves of proba-
bility shape. It can be shown that if the energy collected by a
resonator tuned to f is taken as 100%, the resonators on the
right and left of it, tuned to £+ Af and f— Af, would collect
only 0-65% each. Roberts and Simmonds!-1t 112, 113 hgve
given consideration to the problem of realizing circuits with
responses of probability shape. :
Though the overlapping of the elementary signals may be of
small practical consequence, it raises a question of considerable
theoretical interest, The principle-of causality requires that any
quantity at an epoch r can depend only on data belonging to
ecpochs earlier than r. But we have seen that we could not
carry out the expansion into elementary signals exactly without
taking into consideration also the “overlap of the future.,” In
fact, strict causality exists only in the “time language’’; as soon
as we use frequency as an additional reference the sort of un-

certainty occurs which in modern physics has often been called -

the “‘breakdown of causality.” But rigorous time-analysis is
possible only with ideal oscillographs, not with any real physical
instrument; hence strict causality never applies in practice. A
limitation of this concept ought not to cause difficulties to
electrical engineers who are uséd to the Fourier integral, i.e. to an
entirely non-causal method of description.

(6) SIGNALS TRANSMITTED IN MINIMUM TIME

The -elementary signals which have been discussed in the last
Section assure-the best utilization of the information area in the

sense that they possess the smallest product of effective duration’

by effective frequency width. It follows that, if we prescribe

the effective width Af of a frequency channel, the signal trans-

mitted through it in minimum time will have an envelope

W) = exp — CmAL — IR (1.32)
and, apart from a cisoidal factor, a Fourier transform
_ mff — F\?
. (D(f) = EXp — i(uAT' ‘ (1.33)

. But the problem which most frequently arises in practice is

somewhat different. Not the effective spectral width is pre-
scribed, but the total width; i.e. a frequency band (f, — f;).is
given, outside which the spectral amplitude must be zero. What
is the signal shape which can be transmitted through this channel
in the shortest effective time, and what is its effective duration?

Mathematically the problem can be reduced to finding the
", spectrum $(f) of a signal which makes -

R fz . fa
At = —(ZW)QJ‘% a?df / J¢"’¢df
. - h 1

a minimum, with the condition that ¢(f) is zero outside the
range f; — f;. But this is equivalent to the condition that
&(f) vanishes at the limits f; and f;. Otherwise, if (/) bad a
finite value at the limits but vanished outside, the discontinuity
at the limits would make the numerator of equation (1.34)
divergent.  (This is the converse of the well-known fact that a
signal with an abrupt break contains: frequencies up to infinity,
~which decay only. hyperbolically, not fast enough to make /2
finite,)

v

(1.34)
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The problem is one of the calculus of variations, and is solved
in Appendix 9.4, where it is shown that the signals transmitted
in minimum time must be among the solutions of a differential
equation

did

a7 + A¢=0 (1.35)
where A is an undetermined constant. But the possible values
of A are defined by the auxiliary condition that $(f) must vanish
at the limits of the waveband.* Hence all admissible solutions
are of the form

(1.36)

., F=A
(f) = sinkn
é(f) =
where & is an integer. We can call this the kth characteristic
function of transmission through an ideal band-pass filter. Its
effective duration is

Af = \/(’5’)72-%?l (ED)
and its effective frequency width
s ) -

The shortest duration Ar belongs to £ = 1, i.e. to the funda-
mental characteristic function, which is illustrated in Fig. 1.11,

It

Transmission

T

|
3 ;t N I Y ~

Fig. 1.11,—Spectrum of signal which can be transmitted in minimum
time through an ideal band-pass filter, and the signal itself.

The product AfAf is also smallest for k = 1; its value is 0-571.

“Though this is not much more than the absolute minimum, 0-5,

the transmission chamnel is poorly utilized, as the effective
frequency width is only 0-456 of (f, — f;). Practice has fm.igd
a way to overcome this' difficulty by means of asymmetric,
vestigial or single-sideband transmission. In these methods the
spectrum is cut off at or near the centre more or less abruptly.
This produces a “splash,”” a spreading out of the signal in tire,
but this effect is compensated in the reception,.when the other -
sideband is reconstituted and added to the received signal.
The advantages of a signz] of sine shape, as shown in Fig. L1,
have already been noticed, us it were, empirically: by Wheeler
and Loughrent in their thorough study of television images. 'As
in television the signals transmitted represent light intensities,
i.e. energies, our definitions must be applied here with a modi-
fication. Either the square root of the light intensity must be

substituted for i, or the squper-root of the Fourier transform
et ) '

* Problems of this kind are know:}r S.l mathematics and tHeoretical th!lCSDN_i
Sturm-Liouville *proper value” probleds, Cf. COuRANT, R., and Hlusn;\:in .z
“Methoden der mathematischen Physik,™! Vol. 1 (Springer, Berlin, 1931), or “Inter-
scierce”™ (New York, 1943), p. 249, or anyextbook on wave mechanics. N

t Ref. No. 14. In comparing the above .csults ¥ith theifs it may be borne in
mind that their *nominal cut-off frequency™ is one-hall of a sideband, and Oﬂc‘qWQFf
of the total channe! width. : w -
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of the signal for ¢. The practical difference between these two

possible definitions becomeés very small in minimum problems. .

If we adopt the second, we obtain the same “cosine-squared™
law for the optimum spectral distribution of energy which
Wheeler and Loughren have considered as the “most attractive
compromise.”

Fig. 1.11 shows also the signal s{r} which is transmitted in
minimum time by a band-pass filter, It can be seen that it
differs in shape very little indeed from its spectrum. It ‘'may be
noted that the total time interval in which the s1gnal 1s appre-
ciably different from zero is 25— 1)

It can be seen from Fig. 1.11, that the optimum signal utilizes

the edges of the waveband—in single-sideband television, the
upper edge—rtather poorly. But this is made even worse in
* television by thé convention of making the electromagnetic
amplitudes proportional to the light intensities, so that the

electromagnetic energy spectrum in the optirnum case has the

shape of a cos* curve. This means that the higher frequencies
will be easily drowned by atmospherics. Conditions can be
‘improved by “compression-expansion™ methods, in which, for
example, the square root of the light intensity is transmitted,
and squared in the receiver.

(7) DISCUSSION OF COMMUNICATION PROBLEMS BY
- MEANS OF THE INFORMATION DIAGRAM . :
- As the foregoing explananons might appear somewhat
abstract, it appears appropriate to return to the information
diagram and to demonstrate its usefulness by means of a few
examples. -
Let us take frequency modulation as a first example. Flg. 1.12
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Fig. 1.12.—Thres rcprcsentations of frequency modulation.

contains three different illustrations of the same slowly modulated
carrier: the time representation, thé spectrum and its picture in
the information diagram. ¥t-can bé seen that the third illos-
tration corresponds very closzly to our familiar idea of a variable
frequency. The only departure from the naive expectation that
its pictorial representation would = an vndulating curve is that
the curve has to be thick and bi i Ji. But it appears preferable
not to show the blurring, not on  .ecause it is difficuit to draw,
but also because it'might give n-¢ to the idea that the picture
could be replaced by a definite density distribution. Instead
we have represented it oy logons of area one-half. The shape
of the rectangles, i.c. the ratio AffAf, is entirely arbitrary and
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depends on the conventions of the analysis.- If At is taken
equal to the damping time of, say, 2 bank of reeds, the picture
gives an approximate description of the response of the instru-
ment. It gives also a rough picture of our aural impression of
a siren. How this rough picture can be perfected will be shown
in Part 2,

A second example is time-division mult1p1ex telephony, a
problem which almost forces on us the simultaneous considera-
tion of time and frequency, ' Bennett!-!> has discussed it very
thoroughly by an irreproachable method, but, as is often the
case with results obtdined by Fourier analysis, the physical
origin of the results remains somewhat obscurg. An attempt
will now be made to give them a simple interpretation.

In time-division multiplex telephony, synchronized switches at
both ends of a line connect the line in cyclic alternation to a
oumber N of channels. Let £, be the switching frequency,
ie. the number of contacts -made per second. ~What is the
optimum switching frequency if N conversations, each occupying
a frequency band w are to be transmitted without loss of informa-
tion and without crosstalk—i.e. mutual interference between
channels-—and what is the total frequency-band requirement B"?

The information diagram is shown in Fig: 1.13. The fre.

A :
| Al T v
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Fig. 1. 13.—-«Informa.t10n diagram of time-division muluplex-tclcphony
system.

' quency band W is.sub-divided in the time direction into rectangles

of a duration 1Jf,, ie. f, rectangles per sec. If these arc to
transmit independent data they cannot transmit less than one
datum at a time, But one datum, or logon, at a time is also
the optimum, as otherwise the receivers would have to dis-
criminate between two or more data in the short time of contact,
and distribute them somehow over the long waiting time between
two contacts. Hence, if no information is to be lost, the number
of contacts per second must be equal to the data of N con-
versations each of width w, e f, = 2Nw. This is also Bennett's
result,

We now cons1der the condition of crosstalk. = This is the exact
counterpart-of the problem of minimumn transmission time in 2
fixed-frequency channel, considered in the last Secticn, except
that time and frequency are interchanged. Thué we can say at
once that the optimum signal form wilt be the sine shape of
Fig, 1.11, and the frequency requirement will be very nearly zf;
The charactenstxc rectangle AfAF of this signal is shown in
every switching period, -with the dimensions as obtained in the
]ast Section, The total frequency band requirement becomes

= 2f, = 4Nw. ‘This can be at once halved by single-sidebard
transrmssmn i.e. transmitting only one-half of . But cven
this does not represent the limit of economy, as the signal is
symmetrical not only in frequency, but also in time. In the
case of the example treated in the previous Section this was of
no use, as the epoch of the signal was unknown. But in time-
division multiplex the epoch of each signal is accurately known;
hence it must be possible 10 halve the waveband once more and
reduce W to the minimum requirement W = Nw. An ingenious,
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though rather complicated, method of achieving this, by means
of special filters associated with the receiving channels, has been
described by Bennett, (45
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(9) APPENDICES. -
(9.1) Analysis in Terms of Other than Simple Periodic Functions

-The discussion in Section I suggests a question: Why are we
doing our analysis in terms of sine waves, and why do we limit
our communication channels by fixed frequencies? Why not
" choose other orthogonal functions?’ In fact we could have taken,
for example the orthogonalized Bessel functions '

V(@) ,,(‘" W)

as the basis of expansion. J, is a Bessel function of fixed but
arbitrary order n; ry is the kth root of J (x)=0; k is the expan-
sion index. These functions are orthogonal in the interval
0< ¢ < 7. The factors r fr have the dimension of a frequency.
We could now think of limiting the-transmission channei by
two “‘Bessel frequencies,” say g and p,. Here the first differ-
ence arises. The number of spectral lines between these limits
will be the number of the roots of J,(x} = 0 between the limits
py7 and par.  But this number is not proportional to 7.
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Hence -a Bessel channel, or a channel based on any function
other than simple harmonic- functions, would not transmit the
same amount of information in equal time intervalg.

In principle it would be possible to construct circuits which
transmitted without distortion any member of a selected set of
orthogonal functions. But only harmonic functions satisfy
linear differential equations in which time does not figure
explicitly; hence these are the only ones which can be trans-
mitted by circuits built up of constant elements. Every other
system requires variable circuit components, and as there will
be a distinguished epoch of time it will also require some sort
of synchronization between transmitter and receiver. In com-
petition with fixed-waveband systems any such method will have
the disadvantage that wider wavebands will be required to avoid
interference with other transmissions.  Though this disadvantage
—as in the case of frequency modulation—might be outweighed
by other advantages, investigation of such systems is outside the
scope of the present study, which is mainly devoted to the
problem of waveband economy. . .

(9.2) Mechanical Generation of Associated Signals, and the
Problem of Direct Production of Single Sidebands

In order to gain a more vivid picturé of signals in quadrature
than the mathematical explanations of Section 3 can convey, it
may be useful to discuss a method of geperating them mechan-
ically. It is obvious from equations (1.7) and (1.8) that, in order
to generate the signal o(r) associated with a given signal s(9), it
is necessary to know not only the past but also the future. Though
formally the whole future is involved, the “relevant future’ in
transmission problems is usually only a fraction of a second.
This means that we can produce ¢(7) with sufficient accuracy if

" we convert, say, 0-1sec of the future into the past; in other

words, if we delay the transmission of s(z} by about this interval.
Fig. 1.14 shows a device which might accomplish this,

s{tr) |

_ Photocell™

Fig. 1.14 —-Dewce for mechamcal genaratmn of a mgnal in quadrature

with a given signal.

“The light of a lamp, the intensity of which is"modiilated' by
the signal s(f), is thrown through a slit on a transparent rotating
drum, coated with phosphorescent powder. The drum therefore
carries a record of the signal with it, which decays slowly. After
turning through a certain angle the record passes a slit, and here
the light is picked up by a photocell, which transmits 5() with
a delay corresponding to the angie.* On the inside of the drum
two hyperbolically-shaped apertures are arranged at both sides
of the slit opposite to the first photocell. The light from the

.two hyperbolic windows is collected by two photocells, which

are connected in opposition. By comparing this arrangement

* A somewhat similar device (for another purpose) has been described by Goldmark
and Hendrlcks (Ref. No. 1,10},
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with equation {1.7) it is easy to see that the difference of the two

photocell currents will be proportional to the funcuon in quadra-

ture with s(/).

The complex signal has been discussed at some length as it
helps one to understand certain problems of communication
engineering. One of these is the problem of single-sideband
transmission. It is well known that it is not possible to produce
a single sideband directly. . The method employed is to produce
both sidebands and to suppress one. Eguation (1.7) explains
the reason.  Direct single-sideband production involves knowledge
of the future. The conventional modulation methods always
add and subtract frequencies simultaneously. With mechanisms
like the one shown in Fig. 1,14 it becomes possible to add or
subtract them. This means forming the following expression

R{Y(0) exp joo t] = s(1) cos w,t — o(t) sin w ¢

where w, is the angular carrier frequency. By substituting a
harmonic oscillation for s(r) is is easy to verify that w, has been
added to every frequency present in the signal. Direct produc-
fion of single sidebands involves, therefore, the following opera-
tions: Modulate the signal with the carrier wave, and subtract
from the product the modulation product of the signal in
quadrature with the carrier wave in quadrature. It is not, of
course, suggested that this might become a practical method;
the intention was merely to throw some light on the root-of a
well-known impossibility.

' (9.3) The Schwarz Ineguality and Elementary Signals
The inequality

(PP FdrP < 4P °‘P'd'r)( j ik __df) (1.39)

is vahd for any reat or complex function " which is contmuous
and differentiable and vanishes at the integration limits. The
following is a modification of a proof given by H, Weyl.}

W ay, by are two sets of n real or complex numbers, a theorem
due to H. A. Schwarz states that

]albl +. -+ anbn! < (aia,‘; +ao+ ana:)
Gdt+ ...+ b D7)
If &’s and b’s are all real numbers, this can be interpreted as

expressing the fact that the cosine of the angle of two vectors
with components a, . . . a,and b; . . . b_ in an n-dimensional

(1.40}

Euclidian space is smaller than unity: This can be easily under- .

stood, as in a Fuclidian space of any number of dimensions a
two-dimensiopal plane can be made to pass through any two
vectors issuing from the origin; hence the angle between them
has the same significance as in plane geometry. Equation (1.40)
is a generalization of this for “Hermitian®’ space, in which the

components or co—ordmatcs of the vectors are themselves complex .

nurmbers,
By a passage to the limit the sums in (1.40) may be replaoed
by integrals, so that

Zaby — [fryg(D)dr -
and similarly for the other two sums. The real variable T now
takes the place of the summation index. The Schwarz inequality
now becomes
|[fg dri2 ([ fF*dr){[gg*dr) . (1.41)
This remains valid if we replace /" and g by their conjugates
If*g*drit L (fff*dr)(fgg*dr) . (1.42)

1 WevL, H.: "The Theory of Groups and Quantum Mechanics" {Methuen, 1931),

p. 393,
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Adding (1.41) and (1.42) we obtain

WJff *d")(_I gg*d7) > |[fedr| + |[frgrdrf
> e +fendrE . (1.43)

The second part of this inequality states the fact that the sum
of the absolute squares of two conjugate complex numbers is
never less than half the square of their sums.

We now put

dy

e (1.44)

f=¥ g=

_Substitution in (1.43) gives

+ . -

[frdnfagtdn) > U(qf"—‘*ff + \F*d“’) ] 1.45)

The right-hand side can be transformed by part:al mtegrauon into

d
J (‘¥’-;,~;+¢*§)Td’=f TR ST (149

where it has been assumed that ¥ vanishes at the integration
limits. Substituting this in (1.45) we obtain the inequality (1.39).

In order to obtain the elementary signals we must investigate
when this inequality changes into an equality. From the
geometrical interpretation of Schwarz’s inequality (1.40), it can
be concluded at once that the equality sign will obtain if, and
only if, the two vectors a, b have the same direction, i.e.

In Hermitian space the direction is not changed by multiplica-
tion by a complex number, hence C need not be real.

This condition can be applied also to the inequality (1.39),
but with a difference. (1.39) will become an equation only if
both the conditions (1.41) and (1.42) become equalities; i.e, if
the f'ollowmg two equations are fulfilled

f=Cz and f* = C'g* (1.47)

where C and C’ are real or complex constants. But these two
equations are compatible if, and only if,

C'=C* (1.48)

in which case the two equations (1.47)} become identical. On
substituting / and g from (1.44) they give the two equivalent

equations
difr*
dr

= Cr'¥ and %g = C+r\p* (1.49)

From either of these we can elimvinate Y or its conjugate ¥'* and
are led to the second-order differential equation .

G = oo

Multiplying both sides by (d\F[dT)IT this becomes integrable and
gives

(1.50)

(1 dy\?

= (1.51)

= CC*¥2 - const.

But the constant is zero, as at infinity both ¥ and d¥/d+ must
vanish. We thus obtain the first-order equation

dY _

= & (Compry (1.52)
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with the solution (apart from a constant factor)
W = exp & §|CJ72. (1.53)

Of the two signs we can retain only the negative one, as other-
wise the signal would not vanish at infinity. Putting HC‘[ == o
we obtain the envelope of the elementary signal. The signal (,b
itself results from this by multiplying by cis 2=f(¢t — 7) and is
discussed in Section 5. )
It will be useful to sketch briefly the difference between the
analysis based oa elementary signals and the method of wave
mechanics. In the foregoing we have answered the question:
What functions Y make the product A fAr assume its smallest
possible value, i.e. one-half? The question posed by wave
mechanics is more general: What functions ¥ makes AfAr a
" minimum, while fulfilling the condition of vanishing at infinity?
This is a problem of the calculus of variations, which leads,
instead of to egn. (1.50), to a more general equation, called the
“wave equation of the harmonic oscillator’:

‘sz—‘f+(A—azr2)qr=o

where A and «-are real constants. This equation, which con-
tains (1.50) as a special case, bas solutions which are finite every-
where and vanish at infinity only if .

A=alZn+ 1)
where n is a positive integer. These “*proper”’ or *‘characteristic®’
solutions of the wave equation are (apart from a constant factor)

I
d e— oért

g, =g ot

They are known as orthogonal Hermite functions* and form
the basis of wave mechanical analysis of the problem of the
linear oscillator.
which can be considered as the Hermite function of zero order—
the property that their Fourier transforms are of identical type
The product A fA¢ for the nth Hermite function is

AAf = 4(2r + 1)

That is to say that the Hermite functions occupy in the informa-
tion diagram areas of size 4, 3, § . . . Because of their ortho-
gonality Hermite functions readily-lend themselves to the expan-
sion of arbitrary signals; hence their importance in wave
mechanics. But they are less suitable for the analysis of con-
tinnously emitted signals, as they presuppose a distinguished
epoch of time ¢ = 0, and they do not permit the sub-division of
the int‘ormation area into non-overlapping elementary ceﬂsf

* Also known as parabolical cyhnder functions and Weber—-Hermite functions
Cf. WHITTAKER and WaTson: “Modern Analysis,” pp. 231, 347. They are discussed
in all textbooks on wave mechanics. Cr. also the study by Bazer, T. D. H., and
Minsxy, L.: “Note of Certain Integrals mvolvmg I-Iemnte’s Polynonuals." Philo-
sophzcal Masazme {V1l), 1944, 35, p, 532, :

1 The derivations in this Appeudix can be corisiderably shortened if use is made

of the symbolic operator method of quantum mechanics. Cf, Max BorN: “Atomic
Physics" (Blaclue. 1935), Append.ix )EXI pp- 309313,

They share with the probability function’
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(9.4) Sngnals Transmitted in Minimum Time through a Given
Frequency Channel

It will be convenient to use “frequency language,” ie. to
express the signal by its Fourier transform ¢(f). The problem
is to make the effective duration At of a signal a rmmmum,
with the condjtlon that $(f) = O outside an interval f; —.f;,
Thus

I ¢~d¢

N Gt

af . . . (1.5%)
must be a minimum, where

o= [irtar

This is equivalent to making the numerator in (1.54) a mini-
mum with the auxiliary condition M, = constant, and this in
turn can be formulateds by Lagrange’s method_ m the form

s.[("j, ‘3 + AG* )i =0

where A is an undetermined multiplier.
first term is

5[ds" L_f%df
* * * 15
- J (8 + )= [( 28

- [ ]

But at the limits ¢ must vanish, as it is zero outside the interval
and must be continuous at the limit, as otherwise the integral
(1.54) would not converge. Hence we have here 8¢ = 8¢* = 0,
and the first term vamshes ‘The variation of the second term

in (1.55) is
Af(p*Sd + <;6395*)df
The. condition (1.55) thus gives -

I

(1.39)

The variation of the

ddb‘*
ol

6+ —Sq!;*)df 58

sy

+ A¢*)8¢ (%2 Arﬁ)&;ﬁ*]aﬁ' 0 (158)

. and this can be 1dent1cally fulfilled for arbxtrary vanatmns 896

if, and only if,
d2¢'
ar?

This is the differential equatibn which has to be satisfied by the
mgnal transmitted in tmmmum time, Its solution is discussed
in Section 6. : _

+Ad=0 (1.59)
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~ Part 2. THE ANALYSIS OF HEARING

" SUMMARY

The mcthods deveIoped in Part 1 are applied to the analys:s of
hearing sensations, in particular to experiments by Shower and Rid-
dulph, and by Biirck, Kotowski and Lichte on the discrimination of
frequency and time by the human ear. It is shown that experiments
of widely different character lead to well-defined threshold “‘areas of
discrimination” in the information diagrami. At the best, in the
interval 601 000 ¢fs the human ear can discriminate very nearly every
second datum of information; i.e, the ear is almost as perfect as any
instrument can be which is not responsive to phase. Over.the whole
auditory range the efficiency is much less than 50%;, as the discrimina-
tion falls off sharply at higher frequencies.

The threshold area of discrimination appears to be independent of
the duration of the signals between about 20 and 250 millisec. This
remarkably wide interval cannot be explained by any mechanism in
the inner ear, but may be explained by a new hypothetical effect in nerve
conductlon, i.e. the mutua.l influence of a.djacent nerve fibres.

(1) ANALYSIS OF HEARING

In relation to the ear, two rather -distinct questions will have
to be answered. The first is: How many logons must be trans-
mitted per second for intelligible speech? The second is the
correspending question for the reproduction of speech or music
which the ear cannot distinguish from the original.

A precise answer to the first question will not be attempted,
but some important data must be mentioned. Ordinarily it is
assumed that the full range between about 100 and 3000 c¢/s is
necessary for satisfactory speech tramsmission. But Dudley
Hoemer’s ingenious speech-analysing and synthetizing machine,
the Vocoder,2! has achieved the transmission of intelligible
speech by means of 11 channels of 25¢/s each, 275¢/s in all.
This means a condensation, or compression, ratio of about 10,

Another datum is an estimate by Kipfmiiller*-of the product
of time-interval by frequency-width required for the transmission
of a single letter in telephony, and in the best system of telegraphy,
as used in submarine cables. The ratio is about 40. This
suggests that the Vocoder has probably almost reached the
admissible limit of condensation.

The transmission which the ear would consider as indistin-
guishable from the original presents a more exactly defined and
intrinsically- simpler problem, as none of the higher functions
of intelligence come into play which make distorted speech
intelligible. G. W, Stewart in 1931 was the first to ask whether
the limit of aural sensation is not given by an uncertainty
relation, which he wrote in the form AtAf = 1, without, how-
ever, defining At and A f precisely. He found the éxperimental
material insufficient to decide the question, though he concluded
that there was some evidemce of agreement. New experi-
mental resuits, which have become available since Stewart’s note,
and a more precise formulation of the guestion, will allow us
to give a more definite answer.

In Section 5 of Part 1, methods were described for the expan-
sion of an arbitrary signal into elementary signals, allocated to
cells of a lattice. Fig. 2.1 is an example of a somewhat different
method of analysis, in which the elementary areas have fixed
shape but no fixed position, and are shifted so as to give a
good representation with a minimum number of elementary
signals. We now go a step further, and adjust not only the
position but also the shape of the efementary areas to the signal,
in such a way that it will be approximately represented by a
minimum number of logons. This may be called “black-and-
white™ representation, and it is suggested that—within certain
limits—it is rather close to our subjective interpretation of aural

* Quoted by Liischen, Reference 1.6,
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Fig. 2.1,—Sine wave of finite Tength.

(a; Response of a bank of resonators,
(b} Approximate response of the car.

sensations. Fig 2.1 illustrates this. If a sine wave of fin
duration strikes a series of resonators, say a bank of reeds, w
a time-constant which is a fraction of the duration, their respo:
will be’ approximately as shown by (a). But, as the ear har
hears the two noises or “clicks” at the beginning and end
the tone, its sensations can be better described by Fig. 2.1¢
We shall find Jater more evidence for what may be called 1
“adjustable time-constant'® of the ear. It appears “that,
general, the ear tends to sitnplify its sensations in a similar »
to the eye, and the analogy becomes very evident in the tv
dimensional representation. :

It will be shown below that there is good evidence for wi
may be called a “threshold information sensitivity’ of the e
i.e. a certain minimum area in the information diagram, wh
must be excaeded if -the .ear is to appreciate more than o
datum. The usefulness of this concept depends on how far tl
threshold value will be independent of the shape of the ar
We must thercfore test it by analysing experiments with tc
signals of different duration.

It .has been koown for a Iong time (Mach, 1871) that a w
short sinusoidal oscillation will be perceived as a noise, t
beyond a certain minimum duration as a tone of ascertaina
pitch. The most recent and most accurate experiments on t
subject have been carried out by Biirck, Kotowski a
Lichte.22. 23 They found that both at 500 and 1000c¢/s 1
minimum duration after which the pitch could be correc
ascertained was about 10 millisec for the best observers. Tr
second series of experiments they doubled the intensity of
tone after a certain time, and measured the minimum durati
necessary for hearing the step. For shorter intervals the stepy
tone could not be dlstmgu:shcd from one which started w
double intensity.

These two series of iests enable us to estimate the thresh
area for very short durations. Fig. 2.2 explains the method :
a frequency of 500c¢fs. After 10 millisec the signal was j
recognizable as a tone. But unless it lasted for at le
21 millisec, the ear was not ready to register a second datu
independent of and distinguishable from the first. We ¢
chide, therefore, that the threshold area is determined by
frequency width of the first signal and the duration of
second. It is not necessary to approximate the chopped s
waves by elementary signals, as the ratio of the durations wo
remain the same. This was 2+ 1 for 500 ¢fs, and 3-0 for 1 000
We conclude that in these regions it takes 2-1 and 3 element
areas respectively to convey more than one datum to the eax
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Fig. 2.2.—Experiments of Biirck, Kotowski and Lichte.

Let us now consider another series of tests, the experiments
of Shower and Biddulph on the pitch sensitivity of the ear24,
In these tests the frequency of a note was varied almost sinu-
soidally between 2 lower and an upper limit. The actual law
of variation was not exactly sinusoidal, as the top of the wave
was flattened and rather difficult to analyse in an exact manner.
In the following approximate analysis we will replace it by
sinusoidal frequency modulation with a total swing 87, equal
to the maximum swing in the experiments. By this we are likely

443

It is well known!5 that the spectrum of a frequency-mody.
lated wave with mean frequency S total swing 8f and modula-
tion frequency £, can be expressed by the following series

cis (Zvrf(,r + "STf sin wamt)

m

o .
= ZJ,,(S FI2f ) eis 2l fy +rf )t . 20
J, is the Bessel function of #th order. The amplitudes of the
side lines, spaced by the repetition frequency, are therefore pro-
portional to J,(8f/2f,). Their absolute values are shown at
the bottom of Fig. 2.3 for four tests of Shower and Biddulph.
On the other hand, the absolute amplitudes of the side lines in
the spectrum of the two alternating sequences of elementary
signals are given by the following formulae '

m2 ™2
] _ - 2 —
T, = exp (oc) (_nf) (c:). ol
The upper formula is valid for even, the lower for odd, orders n.
With the.help of equations (2.1) and (2.2) the available constants
« and f, have been fitted so as to rcpresent exactly the ratio of

the first two side lines to the central one. The result is shown
in Fig. 2.3, in which the elementary signals are represented by

cosh

sinh (2:2)
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Fig. 2.3. —Expemnents of Shower and Biddulph,
Thc t‘r:quency-modu]ated signals are reptaced by two alternating series of elementary signals which produce very nearly lhe same spectrum.

to commit an error in the sense of overrating the ear sensitivity,
but this will give us a safe basis for estimating the chances of
deceiving the ear. The modulation frequency in Shower and
Biddulph’s experiments was 2 cfs, and the sepsation level was
kept constant at 40 db above the threshold of audibility., Their
results for ‘the minimum variation 3f at which the trill could
just be distinguished from a steady tone are as follows:—

625 125 250 500 1000 2000 4000 8000 cfs
0-043 0-025 0-012 0-005 0003 0-0023 0-00225 0-0037 cf
Sf
27 31 29 25 30 46 90 295 ¢

It will be scen that 3f remains almost constant up to 1 000 ¢fs;
from about 1000 ¢/s it is the ratio 3 f/f, which is nearly constant.

We now replace the signals used in these experiments by two
periodic sequences of ‘elementary signals with frequencies
Ja + 1f,, staggered in rélation to one another; so that pulses with
higher- and lower frequency alternate at intervals of 0-25 sec.
In order to approximate the actual signal as well as possible,
we must use the available constaats £, and « (the “‘sharpness™
of the elementary mgnais) 50 as to produce nearly the- same
spectrum.

. signals.

their tectangles of area one-half. The agreement of the spectra
even for higher orders 2 is very good up to 2 000 c¢fs, but less satis-
factory at 4 000 and 8000¢fs. But it would be useless to try
better approximations, for example by adding one or two further
sequences of elementary signals. More accurate information
could be obtained only from experiments based on elementary
-It may be hoped that such tests will be undertaken,
especially as Roberts and Simmonds have suggested easy methods
for producing such signals.

For a first orientation the results derived . from the fests of
Shower and Biddulph appear quite satisfactory. Yt-can be seen
from Fig. 2.3 how rectangles can be constructed in the informa-,
tion diagram which mark the limit at which the ear can just
begin to appreciate a second datum. In this case the meaning
of the threshold is that the trill can just be distinguished from
a steady tone. . Measured in units of elementary areas of one-
half, their values are as follows:—

Frequency . .. 62:5-1000 2000 4000 8000 cfs
(Threshold area)f0-5  2-34 2-88. 3-92 6 9

The reciprocals of these figures can ‘be considered as per-
formance figures of the ear as compared with an ideal instrument.
In fact, the performance figure of an ideal instrument would be
unity, as it would begin to appreciate a second datum as soon
as the minimum information area of one-half was exceeded by
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an amount, however small. - The performance figure derived
from the experiments of Shower and Biddulph between 62 and
8 000 cfs is shown in Fig, 2.4. The diagram also contains two

51
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Fig. 2.4.—Performance figurc of the ear.
B.K.L.—Biirck, Kotowsk.i and Lichte. S. and B.—Shower and Blddu!ph

pomts derived from the experiments of ‘Biirck, Kotowski and
Lichte, which fit in as well as can be expected. It is very remark-
able that up to about 1 000 c/s the performance figure is almost
50%, which is the ideal for an instrument like the ear which
cannot distinguish the phase of oscillations, i.e. rejects one-half
of the data. At higher frequencies, however, the efficiency is
much less.

The good fit of the figures obtained from the expenments of
Biirck, Kotowski and Lichte, which were carried out with dura-
tions of 10-20 millisec, with those of Shower and Biddulph, in
which the threshold area measured 250 millisec in the timae direc-
tion, indicates two facts. One is that, at least up to about
1000 ¢fs, and for durations at least in the limits 20-250 milfisec,
the threshold information afea is a characteristic of the ear.
Evidently the performance figure must go to zero both for
extremely short and for extremely long elementary signals, but
within these wide and very important limits it appears to have
an almost constant value.

The other fact which arises from the first is that the ear appears
to have a time-constant adjustable at least berween 20 and 250
millisec, and that the ear adjusts it to the content of the informa-
tion which it receives. But there can be little doubt that, what-
ever resonators there are in the car, they are very strongly
damped, and that their decay time is of the order of 20 millisec
or rather less. - This is borne out by the experiments of Wegel
and Lane on the amplitudes of the oscillations of the basilar
membraoe in the inner ear.* A pure tone excites such a broad
region to oscillations that R. 8. Hunt,2? who has recently made
a thorough investigation of Wegel and Lane’s data, infers from
them a decay by 1 bel in only 2 cycles, i.. in only 2 millisec
at 1000 c/s! Though this estimate might be too low, there can
be no doubt that the decay time of the ear resonators cannot
substantially exceed 10 miillisec, and it is impossible to imagine
that they would keep on vibrating for as much as a quarter of
a second. Hence, even if the duration of a pure tone is con-
siderably prolonged beyond the 10 millisec approximately
required for pitch perception, the ear resonators will still display
the same broad distribution of amplitude. This is illustrated
in Fig. 2.5, In order to explain the high pitch sensitivity of the
ear, as shown, for example, by the experiments of Shower and
Biddulph, it is therefore necessary to assume a second mechanism
which locates the centre of the resonance region with a precision
increasing with the duration of the stimulus. lts eflect is indi-
cated in Fig. 2.5. The second mechanism acts as if there were

* Reference 2.6, Also HARVEY FLETCHER: “‘Speech and Hearing {Macmillan,

1829), p. 184.
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Fig. 2.5.—The two mechanisms of pitch determination,

a second resonance curve, of a non—mechamcal nature, wh

- after about 10 millisec detaches itself from the mechani

resopance curve and continues to contract until, after abc
250 millisec, it covers only a few cycles per second.

Both mechanisms are essential for our hearing. The first
itself would probably enable us to understand speech, but o
the second makes it possible to appreciate music, One mi;
be tempted to locate this second function in the brain, t
mechanisms of nerve conduction can be imagined which mis
achieve the same effect. Perhaps the simplest assumption
that the conduction of stimuli in adjacent nerve fibres is to so
extent unstable, so' that in an adjacent pair the more stron;
stimulated fibre will gradually suppress the cenduction in
less excited npeighbour. The available evidence would
justify the suggestion that this is the actual mechanism; t
intention is only to show that what manifests itself as ¢
“adjustable time-constant” of the ear is not necessarily
consequence of some higher function of intelligence,

In the light of these results we can now approach the questi
of a condensed transmission. which entirely deceives the e
The performance figure as shown in Fig. 2.4 appears to indic:
that considerable economy might be possible, especially in t
range of higher frequencies. This is brought into evidence ev
more clearly in Fig. 2.6, which contains the integrals over fi

-
-r
-

-
-
-

¥
Fig. 2.6.—Utilization of information area.

quency of the performance figures for the ear and for an ide
instrument., Between zero and 8000c¢/s, for instance, tl
maximum number of data which the ear can appreciate is on
about one-quarter of the data which can be transmitted in
It is even likely that further investigatios
might substantially reduce this figure. It may be remember
that the experiments on which Fig. 2.6 is based have all be
carried out with sharp or rather angular waveforms; it is m
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unlikely that the threshold was essentially determined by logons
outside the area considered in our analysis. But it must also be
remembered that the “‘adjustable time-constant makes it very
difficult to deceive the ear entirely. It will be shown in Part 3
that methods arc possible which could deceive any non-ideal
instrument with fixed time-constant. But the ear has the re-
markable property that it can submit the material presented to
it not only to one test, but, as it were, to several, Ultimately
only direct tests can decide whether any such scheme will work
satisfactorily.

{2) REFERENCES
2.1 HoMmER, DUDLEY *“Re-making Speech,” Journal of the
" Acoustical Seciety of America, 1939, 11, p. 169.
(2.2) Birck, W., Kotowski, P, and Licute, H.: “Develop-

445

ment of Pitch Sensations,” Elektrische Nachr:chren-
Technik, 1935, 12, p. 326.

(2.3) BURCK, W., Korowskr, P., and Licute, H.:
of Delays,” ibid., 1935, 12, p. 355.

(2.4) Ssower, E. G., and Bippurpy, R.: “Differential Pitch
Sensitivity of the Ear,” Journal of the Acoustrcal Society
of America, 1931, 3, p. 275.

{2.5) BrocH, A.:“Modulation Theory,” Journal LE.E., 1944, 91,
Part I, p. 31.

(2.6) WeceL, R. L., and Lang, C. E.: *“Auditory Masking and
the Dynamics of the Inner Ear,” Physical Review, 1924,
23, p. 266. )

(2.7) Huwr, R. S.: “Damping and Selectivity of the Inner Ear,”
Jourral of the Acoustical Society of Amertca 1942, 14,
p. 50.

“Audibility

Part 3. FREQUENCY COMPRESSION AND EXPANSION

SUMMARY

1t is suggested that it may be possible to transmit speech and music
in much narrower wavebands than was hitherto thought necessary,
not by clipping the ends of the waveband, but by condensing the
information. Two possibilities of more economical transmission are
discussed. Both have in common that the original waveband is
compressed- in transmission and re-expanded to the original width in
reception. In the first or “kinematical” method a temporary or
permanent record is scanned by moving slits. or their equivalents,
which replace one another in continuous succession before a “window.”
Mathematical analysis is simplest if the transmission of the window
is graded according to a probability function. A simple harmonic
oscillation is reproduced as a group of spectral lings with frequencies
which have an approximately constant ratio to-the- original frequency
The average departure from the law of proportional conversion is in
inverse ratio to the time interval in which the record passes before
the window. Experiments carried out with simple apparatus indicate
that speech can be compressed into a frequency band of 800 or even
500 ¢fs without losing much of its mtc!hglbnhty There are various
possibilities for utilizing frequency comprcssnon in telephony by means
of the “kinematical” method.

In a second method the compression and expansxon are ca.med out
electrically, without mechanical motion. This method consists essen-
tially in using mon-sinusoidal carriers, such as repeated probability
pulses, and local oscillators producing waves of the same type. Itis
shown that one variety of the electrical méthod is mathematically
equivalent to the kinematical rnethod of frequency conversion.

M INTRODUCI'ION

ngh-ﬁdehty reproducuon of speech or music bv current
methods requires a waveband' of about & 000 c/s, It has been
shown in Part 1 that this band-width is sufficient for the trans-
mission of 16 000 exact and independent numerical data. per
second. This high figure naturally suggests the guestion whether
all of this is really needed for the human ear to create an
illusion of perfection. - In Part 2 it was.shown that, even in
the frequency range in which it is most sensitive, the human ear
can appreciate only opne datum in two at the best, and not more
than one in four as an average over the whole a.f. range. More-
over, it must be-taken:into consideration-that, in the experiments
which gave these limits: of aural discrimination, atfention was
fixed on a-very simple phenomenon It appears highly probable
‘that for complex sound patterns the discriminating power of the
ear is very much less. This evidence suggests that methods of
transmitting and reproducing sound may be found which are
much more econormical than those used at present, in which the
original signal shape is carefully conserved through all the links
of transmission or _reproduction. In an economical method
the information content must be condensed to a minimum before

" method.

transmission or before recording, and the reconstrucuon need
not take place before some stage in the receiver or reproducer.
There is no need for the signal to be intelligible at any inter-
mediate stage. Economical methods must therefore comprise
some stage of “condensmg" or “coding”™ and some stage of
“expanding’’ or “decodmg

Dudley Homer's ingenious Vocoder,3! which transmits in-
telligible speech through 11 channels of only 25c¢fs each, is a
well-known example of such a system. It operates with a
method of spectral analysis and synthesis. The spectrum of
speech 18 roughly analysed into 10 bands -of 250 ¢/s each, and
the aggregate intensity in each band is transmitted through a
separate channel of 25c/s. The transmitted intensity is used
for modulating a buzzer at the receiving end, which roughly
reproduces the original spectrum. The eleventh channel is used
for transmitting the *‘pitch,”” which is, broadly speaking, the
frequency of the vocal cords. The Vocoder in its present form
has probably very nearly reached the limit of tolerable com-
pression.

In this Part new methods will be discussed in which the coding
of the message consists essentially in compression, i.e. in a pro- |
portlonal reduction of the original frequencxes and the decoding
in expansmn to the ongmal range. It is evident that neither
compression nor expansion can be exact if economy is to be -
effected. If, for instance, all frequencies were exactly halved,
this would mean that it would take twice the time for trans-

’ mxttmg the same message and there would be no saving. Com-

pression and expansion—in general, “‘conversion”—of fre-
quencies must be rather understood in an approximate sense.
There will be unavoidable departures from the simple linéar
law, and hence there will be some unavoidable distortion. ' But
it appears that these can be kept within “tolerable hmlts whlle
stlll effecting apprecxable waveband economy.

“Two compression-cxpansion systems will be described. The
ﬁrst ‘which operates with mechanically moving parts, will be
called the “kinematical’’ method,* while the second does not
require mechanical motion and will be called the “electrical”
“So far, experiments have been carried out only with -
the kinematical method, and for tlns reason it will occupy most

) of thls Part.

(2) THE KINEMATICAL METHOD OF FREQUENCY ,
. CONVERSION
It will be convenient to explain this method by means of a
particular example before generalizing the underlying principle.
Assume that the message to be condensed or expanded is recorded
: # British Patent Application No. 2462444,
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as a sound track on a film. ..For simplicity, assume -that the

original signal is a simple harmonic oscillation, that is to say a
frequency- Jfy—to be called the “‘original frequency™is produced
if’ the record moves with standard speed v past a statiopary slit.
Imagine now that the slit itseif is moving with some speed u, so
that its speed relative to the film is » — . The photocell behind
the film now collects fluctuations of light of frequency -

ﬁ:” "fn L G
‘Thls mmeans that all frequencxes in the record are convertcd in a
constant ratio {v — w)fv. There is evidently no gain, as.it would
take :the moving slit vf(v — u) times longer to explore a tertain
length of the film than if it were stationary. But let us now
imagine that the film moves across a fixed window, so that the
moving slit is effective only during the time in which it traverses
the window. In order to get a continuous record let a second
slit appear at or before the instant at which the first slit moves
out of the.window, after which a third slit would appear, and
so on, The device is still not practicable, as ev:dentiy every slit
would ‘produce a loud crack at the instant at which it ap-
pearcd befére the window and when it left' it. But now
assume that the window has coptinuously graded transmission,
full' in the middle and fading out at both sides to total
opacity. In this arrangement the slits are faded in and out
gradually, so that abrupt cracks can be avoided. This is the
prototype of a kinematical frequency convertor, schematically
iftustrated in Fig. 3.1, which will be investigated below. Though

v.

L

© Window -
Phatocelt

i
Fig, 3.1,—Frequency oonvertor'with sound film,

the nomenclature will be taken from this special example, the
mathematical theory can be transferred bodily to any other
realization of the same prmc;ple

. In Fig. 3.1 the film is supposed to move in close contact with
the slotted drum, but at different speed. A photocell coliects
the sum of the light transmitted by the individual slits and by
the window. To obtain its response we must first write down
the contribution of one slit and sum over the slits. All slits
will be assumed to have negligible width, For simplicity let
us measure all distances x from the middle of the window and
all times 7 from the instant in which a slit, to be called the
*‘zero”-th. slit, passes through x = 0. The other slits will be
distinguished by suffixes k, which increase in the direction in
which the film is moving. Their position at the time ¢ will be
called x,. - The nomenclature is explained in Fig, 3.2. :

. Let v be the speed of the film, while the velocity of the slits

will be called
u=(l-—x)v S )

The reason for this notation is that eqn. (3.1) now simplifies to
S = wfy, i.e. k has the meaning of a frequency-conversion ratio.

T T D

}"-S—'l k2 kK A —(nr

Window transmission

Fxg. 3 2 u—Explanatlon of notations.

‘ If the spacmg of two shts 1s s the DOSIT.IOD of the kth slit

time ¢ is glven by
- m(l—rc)vt+ks P )

.'The record will be charactenzed by the signal sl(r) which
would produce if it were scanned in the- ordinary way by
statiopary slit in the .position x = 0. Hence, if the windc
were fully transparcnt the SIgnal due to the ith slit at time
WOuld be

sl(r-—— xklv) = .s',(xt kslv) N <

The total reproduced signal, i.e. the hght stum collected by t
photocell, js obtained from this by multxp]ymg by the trar
mission coefficient P{x) of the window and summing over k.

~ In all the following calculations we will assume that -ti
transmission follows a probability law. Thls law has unig
properties .in Fourier analysis and will immensely simplify o
investigations. Other laws which appear equally simple a prio.
and which may have even some practical advantages—such
triangular or trapezoidal windows—Iead to expressions whik
are too comphcated for anything but humerical. dlscussm
Hence we assume

P =exp— (NS . ... . (.

N is a number, t6 be called the “slit number,” which chara
terizes the reproduction process. It is the number of slits
the length over which the transmission of the window falls fro
unity to Ife. The total length of the window in which ti
fransmission exceeds 19 is'4-3Ns, Thus we can say broad
that the total nurnbcr of shts smultaneously before the windo
is 4-3N. -

The reproduced s:gnal ie. the total light coliected by tl
photocell at time-#, is -

o0

(1) = Zk exp — (kuNs)isl(t - xklv) .o 13

—

This, in combination with eqn. 3.3, is a complete descriptic
of the operation of the frequency convertor, It will now t
illustrated in the special case in which s, is a simple harmon
oscﬂlatwn

si() = e¥rife! = cis2mft . . . . ()

The complex form will be used, with the understanding that tt
real part constitutes the physical signal. Simple harmon
oscillations are suitable for the analysis, as their spectrum wi
consist of a few lines. But it may be mentioned that analys
in terms of the elementary signals discussed in Part 1 (harmon
oscillations with probability envelope) can be carried out almo
equally simply, as the reproduction of an elementary signi
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consists also in the sum of a few elementary signmals. This
is carried out in Appendix 7.1, but in the text only the more
familiar method of Fourier analysis will be employed.

Substituting the signal (3.7) in eqn. {3.6) and using eqn. (3.3),
we obtain

s(:) = Zk exp— [(1 w Kot + ksP](Ns)z cis 21 folwet — ksfv)
(3.8)

—

The meaning of this somewhat complicated expression is ex-
plained in Fig. 3.3,

. Worst reproduction

Fig. 3.3. —Thc contributions of md1v1dual slits and the resuiting light
output. :

transforms the sine wave into an clementary signal. By adding
Up the contributions of the individual slits we obtain for some
frequencics a very pearly faithful reproduction, i.e. an almost
pure tone but of different frequency from the ongmal For
other frequencies we obtain strong beats.

A more convenient and compléte description of the frequency
conversmn process is obtained by Fourier analysis. It will now
be convenient to measure distanceés in time intervals, and to
introduce, instead of the slit spacing s, the time interval + between
the passage of two consecutive slits before a fixed point

T=s(l—Kh . . 3.9)

. Wlth this notation the Fourier transform, i.e. the spectrum

of the s;gnal §(z), becomes, by known rules,
SUN) =V (mINT exp = (mNrR(f — Kf°)2Zk cis 2mkr(f — £
S L (3.10a)

ThlS expression allows of a sunple mterprctatlon The
second factor

—

_ "k cis 2akT(f — fy)
is the sum of an infinite number of co'mpléx vectors of - ihit
length, with an angle of 2rr(f — f;) between two consecutive

vectors. This series, though not convergent, is summable,} and
its sum i3 zero for all values of f except those for which

7(f — f) = an integer . . (3..1-1)

Physically this means that the spectruin consists of sharp lines
which differ from ope another by multiples of 1/7. In other

* The calculation is carried out i Appendix 7.1. The rules for Fourier transforms
may be found in Reference 3.2, and, pﬁnicuhrly for: signals of the type (3.8), in
References 3.3 and 3.4,

t Summation is to be understood in the sense of Ces:’n'o

CF, WHITTAKER-
WaTsoN: “Modern Analysis,” 1935, p. 155, R

Each_slit, as it passes before the window,
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words, the spectrum consists of all combination notes of the
original frequency f, with the repetition frequency 1/7.

The absolute sharpness of the spectral lines 1s a consequence
of the assumption that the slits pass before the window at
mathematically exact equal intervals. In each spectral line S(f)
is a “‘delta function,’’ i.e. a sharp peak of infinite height but
finite area. But as in what follows we shail always have to deal
with lize spectra, it is more convenient to re-interpret S(f) asa
function which is zero except at certain discrete values of f
where it assumes finite values, proportional to the amplitude
of the spectral lines. In the same sense, we write the second
factor of egn. (3.104) somewhat more simply as_

2 cis 2akr(f — fo) = Z(f — fo — kiv)

and interpret this as a *“‘selecting factor’” which has zero value
everywhere except for those values of f which fulfil condition

NERERNEENE

IZ A 00 7 3 Fir

(3.12)

Fig. 3.4.—The selection factor.

(3.11), where it assumes the value unity (see Fig. 34) Thus
we write eqmn. (3 10) .

S(f) = exp — (aNTR(f — « j;,)zza(f — fo— kft)  (3.100)

The first factor is independent of the summation index £ and
represents an attenuation function of probability shape, whlch
has its maximum at o

f=unfy

i.e. at frequencies which have been converted in the correct
ratio k. The sharpness of this attenuation curve is reciprocal
to the sharpness of the transmission’ curve of the window,
measured in units of time. Thus, if the window were infinitely
broad we should obtain exact conversion of all frequencies.
But this would have the disadvantage that short signals occurring
at some definite time would be reproduced at completely in-
definite times (with an -infinite number -of repetitions). Con-
versely, if the window were infinitely short .the attenuation
would be zero -and the frequencies scattered evenly over all
possible values defined by eqn. (3:11). . Thus we meet again.the
fundamental uncertainty relation between frequency and time
(or rather, “epoch’) which was discussed in some detail in -
Part 1. . It follows 1mmed1atc]y from previously obtained results
that the probability window is ideal in the sense that it produces

" .the smallest possible product of the linked uncertainties of

frequency and epoch as defined in Part 1.* Nevertheless the
probability window is not necessarily the best from a practical
point of view. ~Some possible nnprovements wxll be discussed
later.

Equation (3.10a) or (3.1058), allows also a s1mple graphmal
interpretation, which is explained in Fig. 3.5 in a numerical
example. The original frequency f ¥s the ordinate; the repro-
duced frequenc:es F are the abscissae. Both are oonvementiy
measured in umnits 1/, ie. as multiples of the repetition fre-
quency. All points (f,/3) which satisfy condition (3.11) lie on
lines at 45° to the two axes, and intersect the horizontal ax:s at
integral values of fr. Thé attenuation curve

exp — ( mNTR(f ~ kfol?

need be drawn only once, though in the Flgu.re it has been done

twice in order to give a clear visual impression of the way in

* In Part 1 undertmnhes were defined, apart from & constant factor. as the r.m.q,
deviations:fYom the average value,
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Eg 3.5, —Diagram og freque;xcy coOmpression.
y K=

which the amplitude is distributed over the (£, /;) plane.
spectral lines are given by the height of the attenuation curve
above the points in which a line f; = constant crosses the lines
{f — fg)r = integer, as shown in an example.

This Figure shows the action of the frequency convertor at
one glance, The correctly converted frequency = « f, appears
in the reproduction only where a line (f — f},)‘r = an integer inter-
sects the .line f= «f,. This condition is always fulfilled. for
Jo =0, and for all frequenc;es whlch are multiples of

= 1fr(l — &) (3.13)

This may be called the length of the “cycle of reproduction™, as
the quality of reproduction varies cyclically with this period.
If f, is an integral multiple of F the reproduction can be made
almost perfect, as the side lines can be almost entirely suppressed
if the slit number N is made sufficiently large. As can be seen
in Fig, 3.6, N = 1 is sufficient to achieve this. But this improve-

s -

feely

T‘
Fr-l-L

0 /" /fr 4

Flg 3.6. ——~D1agram of frequency expansion,
N=]l,g=2 :

ment in the reproduction of certain tones is made at the cost
of others. If N is large, not only the side lines but almost all
amplitudes near the middle of a cycle of reproduction will be
suppressed, i.e. certain notes will be missing. It is evident that
a compromise must be struck between the purity of reproducnon
at the ends and at the middle of every cycle length F. |

The effect of the slit number V on the quality of the repro-

The -

- by making the window longer.
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Fig. 3.7.—Influence of slit number on quality of reproduction.
k=12

.. duction is shown in Fig. 3 7. Three casas are illustrated, a

for an expansion ratio « =2, and for” N=0-25"0:5"and 1
It may be recalled that the average number of slits before tha
part of the window in which the transmission exceeds 19 i
4:3N. In each case a full cycle of rcproducuon is shown, wit
ten equally-spaced original frequencies.

At the left, N = 0-25, the Figure shows the eﬂ'ect of to
small slit numbers. The reproduction is very “noisy,” no fre
quency being reproduced as an approximately pure tone. Ther
is little difference between the spectra of frequencies near th
middle or ‘ends of the cycle; they are all of uniformly pog
quality.

At the right, N = 1, the Figure shows the effect of a too larg
number of slits {cf, Fig. 3.6). The frequencies at the ends ¢
the cycle are reproduced nearly ideally, as practically pure tone:
but the frequencxes in the middle of the cycle are almost entire}
missing in the reproducuon i

The best compromise appears to be N = 0-5, shown in th

" middle of the Figure. The end frequencies are still reproducsd a

almost pure tones, and the intensity falls off little towards th
middie of the cycle. (The intensity is obtained by squaring th
amplitudes shown in the Figure and finding their sum. It fall:
in the middle of the cycle, to 0- 56 of the maximum.} The spectr
of the intermediate tones consists mostly of only two lines; i.¢
these will be vibrating tones, vibrating with a beat frequency o
1{/v. The beats are strongest in the middle, where the tw
spectral components have equal amplitudes.

It might-appear at first sight that, by reducing the beat fre
quency below any limit, the reproduction could be made perfec
to any desired degree. But there are limits to the increase of 1
As N is fixed more or less at (-4-0-5, 7 can be increased onl
‘The length of the window ma
be now defined as the length of time 7" in which a point of th

~ film passes through the part of the window in which the trans

mission exceeds 19 This is

T""4'3NSI!)'_‘4‘3NT(]'-"K) ... (34

Henoe for the optimum, N == 0-5
T O 47TI(1 — K)

If the time T is too long, the time resolution in the reprc
duction will be poor. -Determining the best compromise beiwee
time resolution and frequency reproduction is a matter fo
experiment. On geperal grounds one would expect that th
window length 7 must be kept below the limit at which the ea
could begin to separate the contribution of the two or mor
slits which are simultaneously before the window. For speec
the optimum of T is probably about 100 millisec; for musi
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probably about 250 milliscc.* With x = 2 this would make the
beat frequency 21 ¢fs for speech, and about 8 cfs for music.

It may be noted by comparing eqas. (3.13) and (3.14) that a
simple reciprocity relation obtains between the cycle length F
and the window length T, of the form

FT=43N (3.15)

With optimum choice of N the valge of this is about 2. Thus
for a window length of 100 millisec the optimally-reproduced
frequencies are spaced by about 20 ¢fs; for T = 250 millisec by
about 8cfs. In the reproduction the spacing will be « times
more. :

The theory so far discussed was based on the assumption of
a probability window, which not only has the advantage of
mathematical simplicity, but also gives the most advantageous
reciprocity relation betwsen tirme resolution and frequency reso-
lution. But the optimum number N was found to be only
about 0-3, which means that there are on the average oanly about
two slits before the window. This might produce a slight but
noticeable noise in the optimally-reproduced frequencies, in
particular for f = 0 (background). Hence it may be advan-
tageous to depart somewhat from the probability shape in order
to suppress the noide. Fig. 3.8 shows window transmission

Fig. 3.8.—Window shapes with zero noise for two and three slits.

shapes for two and three slits which produce no noise when
passing before an even background, as the light sum is constant
in any position. Though the mathematical theory of such
windows is very much more complicated, it is not to be expected
~ that they would produce essentially different results from proba-
bility windows of comparable effective width.

(3) DISTORTIONS RESULTING FROM THE COMPRESSION-
EXPANSION CYCLE

A full cycle of condensed transmission of the kind discussed’

consists in compression by a factor k < 1, followed by expansion
in the ratio 1fx. In general, if two conversion processes are
applied in succession to a sunple harmonic oscillation of fre~
quency fp, the resulting spectrum is given by

S(F) = Z Zm exp — {(aNT D fifl — k) + kimy |2
+ (TTNsz)z[f — 15[y + k['r!)]z}

8(f —fo— kiry — mir)) . (3.16)

The derivation is given 1o Appendix 7.2, All data N, 7,  of the
first conversion have been given a suffix 1, those of the second

convetsion the suffix 2. & and m are summation mdexes which

run over all integral vahzes.
The second factor is again a selection operator which is zero
for all values of f with the exception of those where

f=htkln+mr . . . . Q17
This means that only those frequencies will appear in the

spectrum which correspond to combination tones of the original
* Note added 15th June, 1946 —Recent experiments with perfected apparatus have

confirmed the expectations as regards the optimum value of T for speech, but not for

music.
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frequency with one or the other or both of the repetition fre-
quencies 1f7; and 1/7,.
which in the particularly important practical examples to be
considered reduces to a simple series.

In what follows we will consider only pairs of conversion
processes which, on the average, reconstruct the original fre-
quencies. The condition for this is -

+1 (3.18)

The ambiguity of sign expresses the fact that positive and nega-
tive frequencies are equivalent. But only the plus sign will be
considered, and it will be assumed, moreover, that both x, and
K, are positive. Negative conversion ratios are less advanta-
geous, as for a given window length they require higher repetition

Ky =

frequencies [Eqn. (3.14)]. The whole compression-expansion

cycle will be characterized by the compression ratiox, 0 < « < 1,
and the expansion ratio will be assumed as 1/x.

To simplify the discussion it will be assumed that the window
length T is the same in the transmitter and in the receiver. This
corresponds to optiorum conditions, as it will evidently be best
to operate at both ends with the longest permissible T, which

may have different values for speech and for music. This
means .
T/4-3 = N7l — &) = Nyry(l — )l (3.19)
A second simplifying assumption will be
TTy=p=aninteger . . . . (321)

This again is an assumption which is fulfilled in the most im-
portant practical cases. In the interest of optimum transmission
the slit number will be used, in both the transmitter and
the receiver, which gives the best results in simple conversion

(N == 0-4 — 0+65), and if « is the reciprocal of an integer ¥,

1,4 . . . the condition (3.21) will be fulfilled.
Mathematically this has the advantage that the double series
of frequencies in the reproduced spectrum

kit + ml7y

now becomes a simple series, with period 1fr;, as in simple
conversion. We write

ki miTy =k pr)fry =nfry . . (3 22)

S0 that the spectral lines are now characterized by the single
suffix n, which can be called the “order number.” As S(f) will
be different from zero for integer values of n, and for these only,
we can now omit the selection operator d in eqn. (3.16), on the
understanding that we consider only integral values of n.
Edn. (3.17) now becomes :

f=fy+nir, v e .. (323)
Eliminating f by means of egn. (3.23) and introducing the
assumptions (3.20) and (3.21) mto eqn. (3.16) we now. obtam
the s:mphﬁed formula
SCfon = Tk exp — (N[ fomi (1 — 1) -+ k]2 E

+ [for =€)+ k— e} . (3.24)
In this sum, however, not all integral values of & are mcluded
but only those which are compatible with the given value of the

order n. If there are two values %, rm, which satisfy the equation
n=ky+ myp
all other values which satisfy it must be of the form '
k=1ky+ v ‘

m=nmg=-v
o 28

These form, in general, a double series, .
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where » is any integer. It will therefore be- convenient to
introduce ¥ as the surnmation index, and to make the convention
that k, is the smallest positive number in the sequence of k’s.
In other words, let k be the residue of » divided by p, or, in the
notation of the elementary theory of numbers,

(3.25)

As a further simplification we note that S(f,») is a periodic
function of f,, with a cycle length )

n = ky{mod p) e e e e

e P _ -1
Fm'rl(l --;c)“'rz(l - k)

(3.26)

and obtain

= S (Y[R 5)

2

’ f kor nK ’
'+(;_9+}_+v~_5)2] . G2

-:By rearranging the terms in the exponent this can be written,
finally,

St = exp — +(722) 2

" This formula lends itseif well to graphical interpretation. In
Fig. 3.9 the ordinate is again the original frequency f,, measured

2

, A
fo ko nK
Frytrry) - o®

Principal maximum

n-0 /
Fig. 3.9.—Explanation of frequency-conversion diagrams.

in units F, and the abscissae are the reproduced frequencies f.
A line at 45° through the origin represents the correct recon-
version law, f=f,. This is the line of zero order, n=0.
Parallel to this we draw lines through all multiples of 1/r; on
the f-axis. These are the loci of all non-zero intensities. If we
imagine the amplitude S(fp,n) as a surface above the (f;, /) plane,
this surface consists of a number of profiled planes, projecting
above the lines n = constant.

On the line n = 0 we have evidently a maximum of S(f,,0)
for every integral vaiue of fofF. These may be called the “prin-
~ cipal maxima.” At the side lines of higher order there will also
be maxima, but because of the probability function in front of
the sum these will be smaller. We can draw lines connecting
these maxima of different orders. We obtain a set of straight
lines connecting the points where '

JolF + fpfp — nf2p = an integer (3.29)

If the order n increases by one, by eqn. (3.24) k, also increases
. by unity, and f,/F changes by

— (1 — 40P (3.30)
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as shown in Fig. 3.9. It can be sboﬁn from the peometry of
Fig. 3.9 that these Iines_wi]} intersect the horfzontal axis at

tultiples of
P~ 30 (3.31)

These lines, together with the lines # == integer, form a network
with intersections at ‘every maximum of the spectral function
S(ﬁ,,n). 7

Along cach line n = constant, the spectral amplitude is the
same function of fo/F, apart from the shift (3.30) and the factor

exp [_ i{ﬂszP)znzl .

which varies with # but is a constant along each. line. - Thus it
is sufficient to compute the amplitude function once, for n = 0,
where the shift is zero and the exponential factor unity. This
function is o , .
S(fp,0) =Zv exp — 2w NyJx(fHHlF + v)? (3.32)

This, as a function of f/F, is the sum of probability functions,
recurring at unit distance. Tt is shown in Appendix 7.3 that it
can be reduced to a recognized transcendental function of
analysis, the theta function 8. Fig. 3.10 shows this function

Nofe =03 |
3 1 —IF ¢
: ! Mje-06 !
: : ;
0 [ —hff 2

Fig. 3.10.~The function S(fg, 0).

for two values of the parameter Nofxe. In the cases which are
of practical interest N,fx is equal to or larger than unity, and
the probability functions become so sharp that their overlap is
negligible, and (3.32) consists of recurring peaks of probability
shape, : ‘

It is now possible to construct diagrams, which may be called
frequency reconversion diagrams, which show the reproduced
spectrump of any pure original tope in the same way as the
previous simple conversion diagrams. Fig. 3.11 is a first
example of such a diagram, with x = ; i.e. the cycle consists

" in compression to one-half, followed by expansion to the original

range. The slit numbers are assumed as N; = N, = {, which
was previously found to represent the most advantageous com-
promise. The diagram can be considéred as three-dimensional,

-with the profiles of the S-function at right angles to the (f,f)

plane. The amplitudes are plotted in the direction f,, so that
the spectrum corresponding to any original frequency £, can be
immediately constructed by drawing a horizontal line and
plotting the heights of the S-function at the intersections with
the lines of constant order.

This is carried out for a full cycle of reproduction in Fig. 3.12,
which may be compared with Fig. 3.7 (central figure) iltustrating
the result of the expansion, starting from an undistorted record.
It must be noted that = in Fig. 3.7 corresponds to 7, in Fig. 3.12,
and as 7, == 27, the minimum interval between two frequencies
in the spectrum in Fig. 3.12 is half of that in Fig. 3.7. If this
is borne in mind, it can be seen immedijately that the difference
between the two cases is mainly that the two side-lines in Fig. 3.7
have now split up into two lines each (with some insignificant
satellites), and the centre of gravity of these two lines follows
very nearly the same course as in Fig. 3.7. But it has been
shown before that with ¥ = 1, 1/7, can be made so small that
the ear can hardly, if at all, distinguish between the two tones.
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ig. 3.13.—Frequency reconversion diagram.

Fig. 3.11.—Frequency reconversion diagram. Ni = No o be e e
Niw Naodsxm3 71 = k=1
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(I/r; can be made about 7-10-5c/s for speech, and 4¢/fs for

music,) Thus the practical differenice between Figs. 3.7 and 3.12 ,

i8 almost negligible, and we can say that the distortions arise N .

almost entirely in the expansion process. Fig. 3.14.—Re-expanded s%;mcgﬂéf? frequencies (full cycle of

Fig. 3.13 is a reconversion diagram for a transmission cycle C Ni=Na=3%x=4%

with « = }, with the same slit numbers as before. Fig. 3.14 . '

contains the reproduced spectra.” This diagram approximates smaller as compared with the frequency interval between the

even more closely to Fig. 3.7, as the separation in the doublets doublets. Thus in this case the distortions arise even more
exclusively in the expansion process. The only essential differ-

- at either side of the comrect reproduction has become even
28#
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ence as compared with the case » = % is quantitative, The
beat frequency between the doublets is now about 4/r,, twice
as large as before.

If in Fig. 3.14 the doublets are imagined as merged into one,
the lines conpecting them will be almost vertical, Thus we can
interpret the operation of the frequency reconvertor in a some-
what different way. It acts very nearly like a musical instrument
with a discrete set of frequencies, which tries to imitate speech
or music as closely as possible with a limited number of tones.
It is well known that if a vowel is sung into an open piano
with the loud pedal depressed it will echo the vowel very
clearly. The frequency reconvertor performs a similar imitation,
but with the difference that its fixed frequencies are set at equal
arithmetical, not geometrical, intervals. Hence the reproduction
~ will tend to become more perfect at higher frequencies. At

lower frequencies there must necessarily be departures from
perfect reproduction. This becomes evident if it is remembered
that the frequency convertor does not change the rhythm or
“time-pattern” of speech or music, In frequency language this
means. that frequencies well below the audible range are repro-
duced almost with the original value, whatever the value of .

Summing up, we can say that a frequency compressor and an
expander operating in succession produce as close a reproduction
of the original as is compatible with the uncertainty relation,
and the limit is set almost entirely by the expansion, the errors
introduced by the compression being relatively small.

(4) PROVISIONAL REPORT ON EXPERIMENTAL WORK

Theory can give a complete description of the operation of
the frequency convertor either in time language, or in {requency
language, or in the more general representation discussed in
previous communications, but it does not epable us to draw
conclusions on the quality of the reproduction.
_ In order to subject the theory to a first rough test, a 16-mm
sound-film projector was converted by a few simple modifica-
tions into a frequency convertor. Fig. 3.15 is a photograph of
the essential parts, and Fig. 3.16 is a schematic illustration of

the optical arrangement.
' The usual single, stationary slit of the sound head was replaced
by a slotted drum which rotated round an axis passing through
the filament of the exciter lamp. The drum was of 0-005-in
steel tape, and the width of the slits was also about 0:005 in.
The condenser lens was replaced by as large a lens as the fitting
would take, with a free diameter of about 1 inch. Immediately
in front of the slotted drum a frame was arranged for the
“window.” . In the case of films with variable-area sound tracks
this was a film with graded transmission, produced by a photo-
grapbic process or sprayed with an airbrush. For. variable-
density films the window was cut out of black film or paper to
the desired shape. The window and the slits behind it were
imaged on the film by the same microscope objective as used in
ordinary operation, which reduced their image to about one-
guarter. Thus, allowing for optical errors, the effective slit-
width was 0-0015-0-002 in. The maximum leagth, 7, of the
window which could be utilized was limited both by the diameter
of the condenser lens and by the collecting system which guides
the collected light to the photocell, Measured on the film it
was about 6 mm. Sound-film moves at the standard speed of
133 mm/sec; thus the maximum T was about 32 millisec. By
running the film on the “silent™ setting, at about 125 mm/sec,
this could be increased to about 48 millisec. The shortness of
these times was a severe limitation of the apparatus. The
improvement between 32 and 48 millisec was so marked that it
appears to confirm the expectation that the optimum T is con-
siderably longer, probably 100 millisec, perhaps even more.

The slotted drum had a. stepped pulley attached to it which
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Fig 3.15.—~16-mm sound-film projector converted into an experi-
mental frequency convertor.

/ “\

/ Exciter lamp

Uk

Fig. 3.16.—Optical arrangement in frequency convertor.

\ Condenser lens

Slot.bed drum

could be driven at different speeds by means of a spring belt
from another stepped pultey attached to a sprocket of the
projector. By crossing the belt the motion could be reversed,
The following values of x were tried:—

k=025 033 042 1-5 1-75 2-0 30 3-33

It became evident in the first experiments that the window
length of 32 millisec was insufficient for the reproduction of
music, hence the later tests were mostly restricted to the repro-
duction of speech. The uneven rotation of the drum due to
the elasticity of the spring belt was also much less objectionable
with speech than with music,

Male speech remains completely intelligible with & = 1-5,
ie. if the frequencies are raised by 509/, though a baritone
changes into a high tenor. The intelligibility falls appreciably
with k¥ = 1-75, when the voice changes into a mezzo-soprauo,
though even with k = 2 almost half of the words were intelligible.
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This changes a baritone into a soprano. Reduction by the
available compression ratios of 0-42 or less, on the other hand,
changed male speech into a deep growling. entirely unintelligible.

Such conversion experiments, in which the voice becomes
unnatural by frequency transposition, do not, of course, give a
test of intelligibility after reconversion fo the origimal frequency
range, But two tests could be carried out immediately which
allow a first rough estimate of these effects to be made. One
test was to rup the sound film at “‘silent’’ speed, i.e. about
4 standard speed, and apply expansion with « = . Speech
restored in this way sounded almost entirely natural, and the
intelligibility was appreciably better than if the record’ was run
at 4 speed before a stationary slit.

A second reconversion test is based on the fact that positive
and negative frequencies are indistinguishable, so that k = + 1
and « = — 1 both reproduce the original frequencies of the
record. But while 4 I can be realized with a stationary slit,
— 1 means that the slits have to run in the same direction as
the record, with double speed, so that the relative speed of the
film against the slits is — v instead of + », ie. the same in
absolute value, This experiment was tried with different slit
numbers, N==0-5, 0-75, 1 and 2. The beat frequencies 1/
were 60, 90, 120 and 240cfs. N = 0-5 was easily the best, in
full agreement with the theoretical expectations. It gave per-
fectly intelligible, though not quite natural, reproduction. The
larger slit numbers produced strong “rrr”’ sounds, which de-
creased the intelligibility, but it is remarkable that even with &
beat frequency of 240 cfs about half the words were intelligible,
It may be seen from eqn. (3.14) that the beat frequencies at
. k= —1 are the same as for x=+ 3. Thus this test corre-
sponded roughly to a reconversion with x = &, at a window
length of 32 millisec. As it appears highly probable that the best
window length will be about three times as much, perhaps even
more, it appears that ultimately even sevenfold compression and
re-expansion can be realized without essential loss in intelligi-
bility, though with noticeable dxstomon.

(5) DEVICES FOR HNEMA“CAL FREQUENCY
CONVERSION

So far the theory has been explained and lllustrated only in

the case of & sound film, i.e. with a permanent optical record,
. but evidently there are many more possibilities for realizing the
"underlying general principle. = .

The essential features of the kinematical method are as follows.
A permanent or temporary record moves past a fixed window
with suitably graded attepuation, and inside this window the

"record is scanned by pick-ups which are themselves moving
with somne speed different from that of the record. Hence we
can use any sort of record which persists long enough to pass
across the window, and any sort of pick-up which does not
damagc the record. The last condition excludes gramophone
records with needle plck-ups, but there are many more promising
possibilities,

Phosphorescence, wave motlon and magnetxzat:on ‘are well-
known physical processes with “memory.”” The last of these is
suitable for permanent as well as for temporary records, and
will be discussed later. The first two are suitable for condensed
transmission in communication channels, .

Phosphorescent records can be used in very much the same
way as the permanent optical records. previously discussed. The
film is replaced by a loop of film coated with phosphorescent
material, or by a coated rotating drum. This is excited by a
suitable recorder, such as a variable light source or an oscillo-
graph, after which it passes immediately into the window, where
it is scanned by moving slits or their optical equivalents. The
exponential decay of the phosphorescence can be compensated

k!
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by a suitable exponential wedge. Behind the window the
phosphorescence can be removed by heating or by infra-red
irradiation. A similar apparatus can be used at the receiving
end.*

" Wave motion in fluids is an interesting substitute for & moving
record. It has been used in the Scophony system of television
in order to preserve the picture of a whole line for about 104 sec.
The Scophoay trough contains a piezo-electric crystal at one
end and an absorber at the other. The pressure waves running
along the trough produce differences in the refractive index of
the liquid and form an equivalent of a flm running at extra.

_ordinary speed. Tt is well known that such a trough can also

imitate a succession of running skits if the crystal is.operated
with a series of sharp pulses.t Thus a system of two Scophony
troughs, in combinatioa with a suitable optical system, appears
to be a practicable’ form of frequency convertor. But it is
not very suitable for the conversion of sound, where the window
width required is of the order of 0-1 sec, whereas Scophony
troughs, unless they are made very large, conserve the record
for only about 10~4sec. They might perhaps be suitable for
compressed television transmission, if such a scheme should
prove practicable. This subject, however, is outside the scope
of the present paper. ‘
'The most convenient method of condensed transmission will
probably use magnetic tape or wire recorders at both ends of
the communication channel. Fig. 3.17 shows the schematic

Fig. 3.17.——Frequency convertor with magnetic tape.

arrangement.. A loop of the tape or wire runs continuously
over two pulleys., Before reaching the recorder the previous
record is wiped out, by demagnetization by saturation, or—as
in some modern systems——-by demagnetization with high fre-
quency. After passing under the recording edge the tape runs
over a wheel which has a number of sharp, wedge-shaped iron
spokes. To avoid scraping, these are embedded in non-magnetic
material; friction may be prevented by an oil film. The spoked -
wheel rotates with some speed different from that of the film,
according to the x of .the conversion. It forms the eqmvalent
of the rotating slits in the film scanner. The equivalent of a
window with graded transmission is formed by a suitably shaped;
magnet:c gap between the annular wheel and a central iron pole~
piece which carries the pick-up coil The cwrrent induced in

“the pick-up coil is amplified and transmitted through the com-

munication channel. At the receiving end the current is apphed:
to the recorder of a similar instrument, the only difference being
that the wheel rotates here with a different speed relative to the
film. The window length can be varied by changing the position
of the two pulleys which determine the arc of contact, or—more
advantageously—by running the motor at different speeds.  This
may be necessary if it is desired to transmit both speech and
music under optimum conditions.

- All systems of this kind necessarily produce a certain delay
between transmission and reception, The average delay cannot
be less than the width T of one window, plus twice the time.

* A somewhat similar arrangement has been used for other purposes by Goldmark

and Hendricks, Ref. No. 3.5.
1 First suszuwd by P, Okolicsnyl,
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interval between the recorder and the near edge of the window.
In the transmission of speech this can probably be kept below
200 millisec.

The device shown in Fig, 3.17 could be used also for long-
playing magnetic gramophones, dictaphones and the like. The
only change is that a permanent instead of a femporary record
is used and the “‘wiper’’ is eliminated. But it may be mentioned
that in gramophones, sound-film apparatus and tbe like, in
which the aim is as high a quality of reproduction as possible,
and which must be ready to reproduce speech or music without
any change of adjustment, it does not appear practicable to

apply compression to the whole range of audible frequencies.

In such cases it may be better to divide the audic range into
two parts, say 25-1500¢/s and 1 500-7 500 ¢/s. A track may
be provided for each, of which the first is an ordinary record,

whereas the second is compressed fourfold, “Thus with a double-

track record it may be possible to reproduce a waveband of
7 500 ¢fs, at film speeds which would be normally sufficient only
for about 1 500 ¢/s. ‘This application may perhaps be-of interest
in sub-standard sound-film projectors.

{6) ELECTRICAL METHODS OF CONDENSED
~ TRANSMISSION

It may be -surmised g priori that mechanical motion is not an
indispensable part of condensed transmission schemes. Mathe-
matically speaking, the essence of the methods previously dis-
cussed was to apply certain linear but time-dependent operators
to an original signal s,(f), and it appears very likely that these
can be produced also by suitable circuits, It will be shown that
these, and even more general operators, can be produced elec-
trically if suitable signal generators are available.

Mechanical motion in the schemes previously described had
the general function of producing new frequencies from one
given original frequency. Mathematical analysis has shown that
this consists essentially in the repeated addition of the “repetition
frequencies*® of the device to the original frequency. But it is
well known that addition and subtraction of frequencies can be
produced without mechanical means, by the technique of
~ “mixing.”” Hence in order to devise an electrical equivalent of

the kinematical method we must search in the first place for a
suitable method of modulation, Evidently modulation with
other than simple sine-wave carriers is necessary, as maltiplica-
tion with a simple carrier produces only a shifting and duplica-
tion of wavebands.

The other essential feature of the kinematical method was a
permanent or temporary record, or more generally “memory”’
of some sort. Can ordinary electrical circuits have memory?
The answer to this is that every (uned electrical system, i.e. every
system which has no unlimited flat response, has a sort of
memory, because an instantaneous impulse has a certain after-
effect. A particularly interesting special case is a system with
sharp resonance peaks which are at multiples of some funda-
mental frequency, approximating to the “selection factor™ shown
in Fig, 3.4. Such a system would incessantly repeat the same
waveform. If the damping were appreciable, the repetitions
would become gradually less and less like the original. This
repetition is something rather close to the everyday concept of
memory.

Tt might appear that the simplest method of transmission with
non-constant carrier frequency is modulation with a carrier of
constant amplitude, but with a frequency which varies between
two limits sinusoidally, or according to a saw-tooth curve. If
the local oscillator of the receiver varies its frequency according
to the same law, a signal similar to the original can be expected.
This system is known as “‘re-entrant modulation.”” A certain
amount of saving in frequency band may be obtained with this
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system without prohibitive distortions, if the transmission
channel is made smaller than the total frequency sweep. But,
though this system may be the simplest to realize, its mathe-
matical treatment leads to considerable complications. There-
fore the following investigation will be based on a system of
modulation which may not be easy to realize, but which allows
comparatively simple and general mathematical discussion, This
will be achieved by making use once more of the unique properhes
of certain signal shapes with probability envelope,

We assume a carrier of the form

oo

Zk exp — Alt — kr)2
=

If the constant X is real and positive this represents a recurrent
probability pulse, But the discussion is just as simple if we
make the more general assumption that X is a complex constant
with a positive real part.

(3.33)

= o2 4 jB2 . (3.34)

The real part of (3.33) is, apart from a phase constant, the
sum of pulses of the form

e—@% cos (B1)? (3.35)

An example of such a pulse is shown in Fig. 3.18. It repre-

sents a sine wave with a linearly-varying frequency, modulated

Fig. 3.18.—Modnlating pulse.

by a probability pulse. An interesting feature of these waves is
that, by choosing the recurrent frequency conveniently, their
superposition can result in a waveshape which closely approxi-
mates to a wave of constant amplitude with a frequency varying
according to a saw-tooth curvc; hence by suitable choijce of the
constants it is possible to cover *‘re-entrant modulation” without
its mathematical complications,

The great advantagc of the waveform (3.33) or (3. 35) is that
its Fourier transform is of the same type as the signal. This
allows us to evade the danger of the formulae growing more and
more complicated with every step of the analysis.

The signal sg{) may again be a pure harmonic oscﬂlatxon
which may be written in complex form as

5o(r) = cis 2w fyt (3.36:

Only the complex modulation product of (3.36) and (3.33]
will be considered. Tt is well known that the real product car
be obtained from this by adding to it the product with the sigr
of f, reversed, and adding to the sum its complex conjugate
But it will not be pecessary to carry out this process in order t¢
recognize the essential features of this method of transmission
The complex modulation product is

O

85, () = Zk exp[— At — k)2 4

bt -

The Fourier transform of this is

5,0 = () e [_ ity fo)zzk 5f — ﬁ)"‘kf‘f):l

(3.38

2mify] . (337
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Thus by modulation with the carrier (3.33) the spectrum has been
spread out according to a probability law on both sides of the
original frequency, while the result of the recurrence is to split
up the spectrum into sharp lines with constant frequency
interval 1fr.

We now assume that the modulated signal is passed through
a filter with a transfer admittance

exp —~ 72(f — fPlo

where o is a complex constant with positive real part. If gis
real this is a *probability filter.”* The filter transmission centres
on f,, but this will not be the centre of the transmitted wave.
As illustrated in Fig. 3.19, the product of two probability func-

_(3.39)

P 3
oI U” fi Ufﬂ [
(b) NG

el

—

(ot +MeMa +)
Fig. 3.19.—FElectrical frequency conversion.

tions is again a probability function, with a centre somewhere
between the centre of the two factors. Hence the filtered
spectrum S(f) can again be expressed in a mathematical form
similar to (3.38) but with changed constants;—

N

oo [ i+ (- B

a4+ A
[<-]

Zk S(f — fo — ki) . (3.40)
We write now - .
, oflo + Ay =« . (341
and obtain the spectrum in the form |
. 2
)= J(F) e [ - T - ot~ 7]
B B - ﬂz
exp {— oS~ k- - K)fc}z} ’
' Zk SUfF —fo— kivy . (342)

- This is a formula very similar to that obtained in the case of
kinematical compression, but with some differences, the most
important of which s that o, A and x need not be real. It is
interesting, however, to consider the special case in which o, A
and consequently also i are real and positive, In this case
eqn. (3.42) differs from eqn. (3.10a) or (3.105) only in two points.
One is that the maximum of the amplitudes is not at f= «fj,
but at
= wfy+ (1 = &f,

i.e. the spectrum is not only compressed, but also shifted by a
certain constant amount, depending on the position of maximum
filter transmission, f,. The other new feature is the factor

exp [— 71 — «)fy — £)A] (3.43)

.can achieve only part of the reconversion cycle.
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which is independent of f but dependent on the criginal fre-
quency f. Hence different frequencies are not reproduced with
equal intemsity. This effect can be reduced or eliminated by
boosting the original amplitudes in & ratio inverse to the factor
(3.43) before modulation. :

We see now that by applying in succession the operations of
boosting, modulation with repeated probability pulses, and
filtering, we can produce by purely electrical means a compressed
spectrum identical to that obtainable by mechanical methods,
But it is important to note that only compression can be achieved
in this special case, not expansion, as «, given by eqn. (3.41), is
necessarily smaller than unity. .

By a rather complicated calculation, which may be omitted, it
can be shown that by a second modulation—in the receiver—
with a modulating wave of the type (3.33) it is possible to restore
the original frequency, with very much the same distortions as
in kinematical reconversion. But it is essential that both Aand o
should have imaginary components, i.e. both the modulating
pulses and the filter characteristic must be of the type as shown
in Fig. 3.19. Simple probability pulses and probability filters
Hence
thé electrical method is better described as “condensation-
dilution’* than as’ “‘compression-expansion.” The transmitted
signal spectrum is entirely dissimilar to the original, as the
spectrum correspouding to a single original frequency is spread
out over the whole transmitted range.

At the present stage it is impossible to overlook the possi-
bilities of electrical methods of condensed transmission, which
in principle appear almost unlimited. Progress is likely to be
slow and difficult, as the mathematical treatment of pulses
different from those considered here is liable to become exces-
sively complicated, and experiments unguided by theory do not
appear very promising. But the economy which may ultimately
be achieved is likely to be large enough to encourage efforts in
this direction.
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(8) APPENDICES
(8.1) The Response of Frequency Convertors to Element
Signals .
It has been shown in Parts 1 and 2 that signal analysis in terms
of certain “elementary signals” has particular advantages,
especially in problems of physiological acoustics. These ¢le-
mentary signals are simple harmonic oscillations, modulated
with a probability pulse. Analysis in terms of these functions
contains the representation of a signal as a time function s(?} and.
as a frequency function S(f) as limiting special cases.
" Rlementary signals are also very suitable for describing the
operation of a frequency convertor with a probability window,
as a convertor reproduces any function of this type as the sum
of functions of the same type. ‘
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The frequency converton transformus an “original” signal 5,(z)
into

W= ke { — (Y — 0 - u)k;r]} G4

—

This formula is obtained from eqn. (3.6) if X, is substituted
from eqn. (3.3) and the repetition interval 7 from eqn. (3. 9).
Substitute for 5,{¢) a general elementary signal

€2(r — R |
TN

" The. dimensionless parameter e characterizes the sharpness of
the signal, In Part 1 the effective duration of a signal has been

defined as +/(2#) times its r.m.s. duration. In the present case
this is )

51(0) = exp — ———_0"_cig 2mf(t ~ 1) (3.45)

7 NT

(Af), = 57 (3.46)
The effective spectral width is, by the same definition,
1 €
AN = V@D N (.47

'I‘_hc relation of the time inferval Nr to the window width T is
given by eqn. (3.14), which combined with (3.46) gives

_ 041 T

B.g. for k = 2 € (in absolute value) is 0-41 for signals with an
effective duration equal to the window length. It is larger for
sharper signals, smaller for longer ones.

Substitution of (3.45) in eqo. {3.44) gives

s()= Zkexp [— (%)2{@ + kTR + €[nt — k(1 — )yr— :0]2}]
X cis 2afy[wt — (1 — kr — 1,] (3.49)
‘This can be written in the simpler form
() = Sk exp [~ Qr — BR + ]
where the constants have the following values:—
Qz = (1 + e&/(NT)
= — {k‘r — k(1 — k) + L] — ]%(Nr)z}](l + €22)
Yo = — {(1 + P — (k12 — (1 — Wkt
+ JJINTR — 2mif [ — er + 1] (3.51)
The Fourier transform of the kth term of (3.50) is

%’-’exp [— (’—T{)z = 278, f + yk]

Applying this to (3.50) a somewhat lengthy calculation leads to
the foIlowmg expression for the spectrum of the reproduced
signal :—

(348

(3.52)

‘\,’( )NT (IN )2
S = A e |~ o wfo?)

. 24
X C15 m{fzf(’f—fo)fo

el

—_ o

ekt + 1) s 2Tkt
AF e | X ST ae

{[1—-exl ~ ] -/} (3.53)

(3.50)

GABOR: THEORY OF COMMUNICATION

The first factor, in the first line, can be called the attenuvatior
factor, the second the phase factor, and the third the spectra
separation factor. If € = 0 and 7, = 0, egn. (3.53) simplifies
to eqns. (3.100) and (3.10b), discussed in the text. In this special
case of infinite wave trains the separation factor becomes a
“selection factor” and the spectrum becomes a line spectrum,
In the general case the attenuation factor has the effect that
the effective spectral width of the reproduced signal becomes

1 YO+ ed
Af = +V(2m Nr

which is /(1 + e&2)fe times the original value (347). If
€ is very large, ie. if the signal is very sharp, this ratio
approaches «, the conversion ratio, This means that with very
short signals the spectral envelope is reproduced accurately, on
a scale x times the original. The reproduced ‘signal s(¢) itself
consists in this case of an accurate reproduction of the original,
but on a time scale 1/x times extended, and of similar but weaker
“echoes,"” produced by repwted passage of slits acToss the record
of the short signal.

The opposite case arises if the sngnal is of long duration,
Here the spectral width, which in the original is very small, is
expanded to a value l[V(Z'rr)N‘r whereas the envelope of the
reproduced signal s(f) approaches the original very closely.
This is the reason why the frequency convertor can reproduce
withont much distortion the articulation of speech or the time
pattem of music.

(3.54)

~

(8.2) Combination of Two Conversion Processes in Succession

Consider the conversion as described by eqn. (3.105) as a first
operation on the frequency £, with suffix **1,”” which produces
a certain spectrum §, on an intermediate frequency scale f;

S5 = exp [ Ny — ki SNBSSy = fo — KD (3.59)
This is different from zero only if
Sfi=JSo+ kit

where k is any integer. Apply now a second similar operation,
with suffix “2,”" to the result of the first operation. This splits
every spectral line (3.56) into an infinity of equidistant lmﬁs,

given by
=1+ mfz, (3.57)

Ehmmatmg the mtcrmednatc frequency f, from the two -last
equations, we see that non-zero amplitudes in the final spectrum

will appear at

(3.56)

f=.f'0 + k.ll’r[ + m]’rz (3.58)

The reduction of the spectrum to discrete lines can be con-

veniently expressed by the selection operator
ZmZk 8(f — fo — kiy — miTy) .

using again the “delta function,” which is zero é'verywhere except
at argument zero. We can now write the result of the two
operations as follows:—

SU) = EmZk exp [— (mNy S, — w1 oP)
X exp {— (N2 (f — w2 f)P]
X S(f'—'fi;— k.’7'1 — mfTy)

Eqn. (3.16) is obtained from this by substituting the values of
Jyand f from egns. (3.56) and (3.57).

(3.59)

(3.60)



GAROR: THEORY OF COIWIVIUNICATTON
Any spectral line as given by eqn. (3.58) ¢an be characterized ©

by two integers &y and m,
= fo + kelmy + myfTy

It =, and 7, are incommensurable there will be no other integral
values which satisfy this equation; hence only a single term of
the sum (3.60) will contribute to the amplitude of this frequency.
Bat if 7, and T, are in a rational relation

(3.61)

/T2 = plg (3.62)

where p and g are relative primes, there will be an infinity of
integer solutions of (3.61) of the form

k=k0+vp

m=m0——vq

&) .63)

where. v is any integer. But if the same window width is used
in both conversion processes, and if the speed ratios are pro-
duced by toothed wheels, by egn. (3.20) 7,/r, is bound to be
rational, This means that the line spectrum 3.58) will repeat

itself with a period
PITI = ﬂ‘fz (3.64)

To avoid unessential complications the discussion in the text is
restncted tothecase g = 1.

(8 3) Reduction of the Recurrent Exponentlal Pulse to Theta
Functions -

In egn. (3.28) for S(f, n) introduce the following notations:—

‘ﬂ"Nz 2_._ 2. K . fo ko _ .
Z(T) = a4 E‘:"" [.l-,. + ? =X (3.65)
This enables us to write it in the form
(3.66)

S(f, n) = S, P-) = g e—atytv—i)t
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The theta function 8y, as defined in analysis* is
boglz, Ty = ) velmlivtIn) (3.67)
or, with imaginary arguments,
Bool iz, j7) = mmz\,e—mww (3.68)
Now put mT=of zZr=y—p {3.69)
This gives

o0

z
Boo[j%()’ ~ 1) JE:;] = emr—uﬁzve-a'(vw—uﬁ (3.70)

Dividing this by eqn. (3.66) we obtain
2
SO, ) = Ef“’["“‘*”‘““’]@oo[f%v =1 ,.:;‘] .
and finally, substituting the original values for a, g and ¥

St ) = e 2G [R5 -5+ )]
), jzw(%% 2:] (3.72)

3.71)

| () (R4 5 -

Tables of theta functions may be found in Jahnke and Emde,
“Tables of Functions” (Dover Publications, New . York, 1945)
and in other works.

ACKNOWLEDGMENTS

The author desires. to thank Professor Max Born for criticism
of Part 1 of the paper; Messrs. B, Tuppen and I. Williams for
their valuable help in the experimental work in connection with
Part 3; and the Directors of the British Thomson-Houston Co.,
Ltd., for permission to publish the paper.

* Also :alled 9. CE. CoumanT and HILBERT: “Met.hoden der mathematischen
Physik,” vol. 1 (Inlers:aence. New York, 1940), &ed 1. The potations employed

by Whittaker and Watson in Modem Analysns"@ » PD. 462-490), are somewbhat
diffarent.

DISCUSSION ON

“RADIO MEASUREMENTS IN THE DECIMETRE AND CENTIMETRE WAVEBANDS”*
NORTH—VVESTERN RADIO GROUP, AT MANCHESTER, 18TH JANUARY, 1946 '

Mr. R. Cooper: The authors use the terms (a) accuracy, (8) .

absolute accuracy, {¢) reading accuracy, {d} setting accuracy.
The accuracy of a measurement is determined by the deviation
of the measurement from the true value of the quantity measured.

This deviation is due to errors which occur in making the -

various instrument settings, readings and calibrations necessary
to make the measurement. Will the authors state the sources
of error considered in defining each of the above variations of
instrument accuracy? In the case of the calorimeter method of
‘measuring high powers the authors state that the “absolute
accuracy” of the method is of the order 5%. I presume this
value pertains to the equipment used by the authors and is not
a statement of the limit of accuracy of the method. I am
particularly interested in this system and would apprecnate a
statement of the sources and magnitudes of the various errors
which contribute to the 59 “absolute accuracy.”

,X In considering the measurement of high powers the authors do

per by R. J. CLayTON, J. E. Houmzn.l-l R. L-LaMont, and W, B. Woisyaw
‘(m 1946, 93, Part I1L, p. 7).

not mention that it is sometimes necessary to feed the energy
into the calorimeter in the form of recurrent impuises. Under
these conditions high electrostatic stresses may be set up in the
system. To what extent does this consideration influence the
design of the resonant-chamber calorimeter (Fig. 14)? .

A point having bearing on the. design of calorimetérs for

operation below 10 cm wavelength is the fact that water exhibits

ant absorption band in this region and its diclectric constant is a
fubction. of -temperature. Consequently mismatches may be
caused by excessive temperature rises. This effect is likely to be
pronounced in calorimeters containing a considerable volume of
water such as that shown in Fig. 15. I have fqund a calorimeter
of the type shown in Fig. 16 to be free from the effect.

I agree in general with the authors’ remarks concerning the
design of standing-wave detectors.. However, I prefer to limit
the length of the slot to about three-quarters of a wavelength, and
1 judge the performance of standing-wave detectors from curves
obtained with an approximately correct termination and with a
highly reflecting short-circuit termination. Can the authors give



